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Abstract—Mobile data offloading is an emerging technology to alleviate cellular network congestion and improve user service quality.
In this paper, we investigate the economics of mobile data offloading through access points (APs) deployed by small cell service
providers (SSPs), implementing uniform volume prices for all the mobile users (MUs) in each SSP’s coverage including the overlapping
area. In particular, we consider a data offloading game with a single mobile network operator (MNO) and two SSPs with overlapping
coverage areas, where each SSP announces a uniform price for serving the cellular traffic within its coverage, and the MNO
determines the traffic volumes to offload. We show that there is no pure Nash equilibrium (PNE) under such price competition, and
determine the corresponding mixed strategy Nash equilibrium (MNE) using price randomization. As a practical solution, we propose a
simple one shot auction mechanism that is easy to implement and has PNEs which is payoff equivalent with the MNE under price
competition. We believe that this simple mechanism due to its simplicity of determining the equilibrium prices could be used in the
negotiation between the SSPs and the MNO to determine the average service prices. Finally, we study the strategic topological
infrastructure placement problem using a 1-dimension (1D, linear) user traffic flow model and a 2-dimension (2D) user traffic flow model
when SSPs compete assuming uniform price competition as above. We show that the first mover in the placement problem will deploy
its APs to cover more than half of the total flow volume and has an advantage to obtain a higher equilibrium payoff.

Index Terms—Mobile Data Offloading, Uniform Pricing, Mixed strategy Nash Equilibrium, Auction, Strategic topological infrastructure
Placement

F

1 INTRODUCTION

We are witnessing an unprecedented worldwide growth
of mobile data traffic that is expected to continue at an
annual rate of 45% over the next few years, surpassing
30 exabytes per month by 2020 [1]. Traditional network
capacity expansion methods such as network technology
upgrades and additional spectrum acquisition are costly,
time-consuming, and outpaced by the continuing traffic
increase. Mobile data offloading is a promising approach
to utilize certain complementary transmission technologies
to deliver mobile traffic originally targeted to cellular net-
works. A large number of studies have investigated the
potential benefits of mobile data offloading and various
innovative schemes have been proposed to better manage
data flows including WiFi [2]–[5], femtocells [6]–[8], and
opportunistic offloading [9], [10]. It is shown that in a typical
urban environment, WiFi can offload about 65% cellular
traffic and save 55 % battery energy for mobile users (MUs)
[3]. This performance gain can be further enlarged with
the use of delaying transmission [11], [12]. The authors in
[13], [14] investigated the network operators’ profit gains
from offering dual services through both macrocells and
femtocells. All of these studies have shown that mobile data
offloading is a cost-effective and energy-prudent approach
to resolve network congestion and improve user service
quality.

However, the ubiquitous deployment of WiFi or femto-
cell access points (APs) by the mobile network operators
(MNOs) themselves is costly and often impractical due to
the limitations of additional site spaces and backhaul cost.
An alternative option for the MNOs is to employ existing
WiFi and femtocell APs already deployed by third-party

small cell service providers (SSPs) (as O2 did with BT [15]),
instead of deploying their own offloading networks. This
outsourcing method is attractive due to the high population
of WiFi or femtocell users [16] as well as the technology
innovations (e.g. Hotspot 2.0 protocol). Nevertheless, with-
out proper economic incentives, the SSPs are expected to be
reluctant to admit the cellular traffic since offloading cellular
traffic will consume their resource and increase serving cost.
Thus, studying the economic interactions of the involved
entities is an important step towards the realization of this
promising technology.

In this paper, we develop a framework to define the fair
prices for contracts between large SSPs and the MNO for
the data offloading service. In particular, we consider the
common case where

• The SSPs compete to offload data from the same MNO
because of the overlapping geographical coverage.

• A single uniform price independent of specific location
is to be negotiated between the SSPs and the MNO.

As we show, due to these overlapping areas where the
customers of the macro operator can be served by both
SSPs, there might be no pure Nash equilibrium (PNE) when
the SSPs compete using prices that are uniform over his
whole service area. This result suggests that simple uniform
pricing mechanism is unstable and impractical. To remedy
that in a competitive market, we propose a simple one-shot
auction mechanism between the SSPs and the MNO with
the following properties:

• It’s easy to perform based on observable system param-
eters (properties of the coverage area of the SSPs and
average customer traffic densities).

• It has a pure NE that is payoff-equivalent for both
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SSPs and the MNO with the mixed strategy Nash
equilibrium (MNE) in the case of free market price
competition.

Hence this mechanism can be used as a basis for a practical
and sustainable price determination between various stake-
holders, and can be used off-line in price negotiation exploit-
ing average historical measurements of traffic offloading
density at various locations served by the SSPs.

As a natural extension of the price determination mech-
anism, we study the strategic topological infrastructure
placement problem of SSPs competing for offloading. Given
the cellular flow information1 of a specific network (assume
that there is no AP deployed in the area at the beginning),
both SSPs compete to deploy new APs in order to optimize
their offloading payoffs in the subsequent data offloading
pricing game. Particularly, in this work we study the AP
placement problem using a simple 1-dimension (1D, lin-
ear) user traffic flow model, where the cellular traffic is
uniformly distributed on some given interval, and further
extend it to a 2-dimension (2D) flow model. We show that
the first mover in the placement problem does not want to
“over covers” an area and has an advantage to gain a higher
payoff.

The main contributions of this work are summarized as
follows:

• We study a general market model where two SSPs
compete to offload cellular flow from a single MNO,
and characterize the uniform pricing strategies of the
SSPs in the data offloading game.

• We show that there is no PNE in the data offloading
game with uniform prices, and compute the MNE using
price randomization.

• Since MNE can not be implemented in practice, we
further propose a payoff-equivalent one shot auction
mechanism that is simple to implement and has PNEs.
The SSP who fails the auction is allowed to quit the
competition and set the monopoly offloading price to
maximize its payoff, and the SSP who wins the auction
will use a price same as its bid for users in both the
overlapping and non-overlapping areas of coverage.

• Based on the above auction mechanism and the cor-
responding market equilibrium, we further investigate
the strategic topological placement problem consider-
ing a simple linear cellular flow model and a 2D flow
model.

The rest of this paper is organized as follows. Section 2
briefly reviews the existing work. In Section 3, we describe
the data offloading problem and analyze the uniform pric-
ing scheme for the SSPs. In Section 4, we investigate the
Nash equilibria of the data offloading game with uniform
prices, including the PNE and the MNE. In Section 5, we
introduce a one shot auction mechanism and prove the exis-
tence of the PNEs of the auction offloading game. In Section
6, we study the strategic topological placement problem
of a 1D cellular flow model and a 2D flow model using
results derived from previous sections. Numerical results

1. In this work, we assume that the cellular flow information is
common knowledge for the SSPs, where they can get from the MNO or
from long term history interactions.

and analysis of the offloading game and the auction game
are presented in Section 7. Section 8 concludes the paper.

2 RELATED WORK

There are many works considering the interactions between
SSPs and MNOs from an economic point of view [17]–
[24]. In [17] and [18], the authors considered the incentive
framework for user-initiated data offloading, where MUs
decide when and where to offload their traffic, and hence
the MUs offer necessary incentives in order to access to the
APs. In this paper, we consider the network-initiated data
offloading through APs deployed by third-party SSPs, and
we assume that the MUs are either (i) willing to offload their
traffic exactly as the networks intended, or (ii) unaware of
the offloading process at all (i.e. data offloading is totally
transparent to MUs) [20]. The authors in [21] proposed an
iterative double auction mechanism to manage the market-
place where MNOs competed to lease multiple (possibly
overlapping) APs for data offloading. The work presented
in [22] formulated the offloading problem as a combinatorial
reverse auction for realistic scenarios in which only part of
the data traffic can be offloaded. In [23], a distributed market
pricing framework was proposed for mobile data flows to
price the offloading service. The payment for a specific flow
is shared proportionally among all APs according to the
amount of data offloaded to each AP.

Most of the previous works focus on the scenarios in-
volving (i) SSPs with non-overlapping coverage areas, thus
they can both serve as a monopoly, i.e. no competition
between SSPs. (ii) SSPs with overlapping APs and non-
uniform prices, i.e., that charge different prices for users in
the overlapping and non-overlapping areas determined by
rather complex auction mechanisms. Another shortcoming
is that the pricing schemes proposed in the existed literature
only focused on the volume of cellular data that is assigned
to each APs, without considering the geographical locations
of the MUs that generated these data. We believe that in
the practical setting of future 5G deployment, due to the
high population and density of small cell APs, it’s important
to develop simple pricing schemes whose complexity does
not grow with the number of APs operated under a single
SSP. To the best of our knowledge, this is the first work
that considers a mobile data offloading framework with
overlapping SSPs and a uniform pricing scheme.

Additionally, the deployment of small cells has been
identified as one of the future-proof solutions to cope with
the increasing demand for higher data rates and ubiquitous
access in mobile networks [25]–[27]. There have been some
studies on WiFi deployment problems [28]–[31]. Wang et al.
[29] proposed WiFi deployment algorithms based on real-
istic mobility characteristics. Even though their algorithms
significantly improve the continuous coverage for mobile
users while reducing the required number of APs, they
regarded WiFi as a separated network and did not consider
the objective of mobile data offloading. Dimatteo et al. [2]
quantifies the number of APs required for WiFi offloading
with different quality of service for data delivery. Further
in [30], the authors proposed a mathematical approach to
find the minimum required number of WiFi APs for efficient
offloading. However, none of them considered the economic
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interactions between the deployment of WiFi network and
cellular network, and the possible influences on the offload-
ing results.

Specifically, in this work we try to answer the question
that how should the SSPs deploy their APs strategically
in order to maximize their payoffs assuming they compete
using uniform pricing schemes in the offloading game, and
what kind of deployment equilibrium can we observe? The
results in this work can provide some insights for the SSPs
about how and where to deploy the new APs and the
possible equilibrium deployment scenarios.

3 PROBLEM DESCRIPTION

In this section, we first describe the system model and the
corresponding flow model of the AP-based cellular data
offloading problem. Then the uniform pricing strategies of
the SSPs are investigated, and we show that SSPs have no
incentive to price below some threshold value.

BS

BS

BS

: MU

: Macrocell BS
MU1 MU2

MU3

MU4

MU5

MU6

MU7

MU8

: AP of SSP1 

: AP of SSP2

Fig. 1: An instance of the AP-offloading scenario with 3
macro BSs serving 8 mobile users (MUs) and two SSPs. Each
SSP has deployed 3 APs and can offload the traffic generated
by those MUs within its coverage.

3.1 Network model
We consider a cellular network that includes one MNO with
multiple macro cellular base stations (BSs) and two SSPs
with multiple deployed APs. The APs deployed by different
SSPs may be overlapping with each other. The MNO serves
a set of MUs. The traffic of a MU can be offloaded to an
AP only if it is in the coverage of that AP. Each MU can be
served by no more than one AP simultaneously. Figure 1
illustrates such a two-tier network.

As shown in Fig. 1, the MNO can offload the traffic
generated by MU1 and MU5 merely to the APs deployed
by SSP 2, and the traffic generated by MU2 and MU3 only
to the APs of SSP 1. However, the traffic generated by MU4
and MU6 can be offloaded to either SSP 1 or SSP 2 since they
are located in the overlapping coverage area of both SSPs.
In addition, MU7 and MU8 are not within the coverage of
either SSP, so they can only be served by the MNO. Assume
that time is slotted and we study the game for one time
period. The location and traffic volumes of MUs registered
to the MNO may change over time but are considered fixed
within each time slot 2. According to the MUs’ offloading

2. The time period can be one hour, one day, or one month, and the
corresponding flow can then represent the average volume of flow in
this time period.

SSP 1
12f

1f

2f

MU2 & MU3

MU1 & MU5

MU4 & MU6
MNO

MU7 & MU8

SSP 2

Fig. 2: Mobile data flow model corresponding to the net-
work model in Fig. 1, where fi , i ∈ {1, 2} is the aggregate
traffic generated by users covered only by SSP i, and f12 is
the aggregate traffic generated by users in the overlapping
area.

possibilities, we can combine the traffic volumes of the MUs
into cellular data flows that can be offloaded only to SSP 1,
SSP 2, and both SSPs. Therefore, we can map the network
model to an offloading flow model as shown in Fig. 2,
where fi, i ∈ {1, 2} is the “monopoly flow ” of SSP i, i.e.
the aggregate traffic volume generated by the users located
only in the coverage of SSP i, and f12 is the “overlapping flow
” , i.e. the volume of aggregate traffic generated by users
located in the overlapping area of both SSPs.

3.2 Pricing Problem of the SSPs

We consider the uniform pricing scheme, where SSP i sets
a uniform offloading price pi ≥ 0 for all the MUs in its
coverage, which will cause price competition between the
two SSPs in the overlapping areas, and the MNO will choose
the available SSP with a lower price to maximize its payoff.
In the case when the two SSPs have the same offloading
price, each SSP will serve half of the flow in the overlapping
area. Let cM denote the marginal cost of the MNO, which
represents the decrease of MNO’s serving cost induced by
offloading to some SSP one unit of its customer traffic.
For SSPs with non-overlapping APs, each SSP acts as a
monopoly supplier in its own coverage area and thus it will
set a monopoly offloading price cM to maximize its payoff 3. In
the following, we focus on the scenario where the coverage
area of the APs deployed by the two SSPs are overlapping
with each other, which is more reasonable due to the ultra-
dense deployment of APs in future networks. For simplicity,
we assume that the SSPs have the same offloading cost c for
each unit of traffic served and the offloading capacity of the
APs is unlimited.

3.2.1 Payoff of MNO

Given the offloading price pi announced by SSP i, i ∈ {1, 2},
the MNO’s payoff is given by

uMNO(p1, p2) =f1(cM − p1) + f2(cM − p2)
+ f12(cM −min{p1, p2}),

(1)

where pi ∈ [c, cM]. We assume that the MNO will always
prefer to offload as long as pi ≤ cM.

3. Even when pi = cM, and MNO makes zero profit, it still prefers to
offload the cellular traffic since the saving capacity can be used to serve
other users and relieve the network congestion in the BSs.
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3.2.2 Payoff of SSPs

Given the announced price of SSP j as pj , j ∈ {1, 2}, the
payoff function of SSP i with price pi is given by

ui(pi, pj) =


fi(pi − c) if pi > pj ,

(fi + f12)(pi − c) if pi < pj ,

(fi + 0.5f12)(pi − c) if pi = pj ,

(2)

where pi ∈ [c, cM], for i ∈ {1, 2} and j 6= i.

3.2.3 Uniform Pricing Scheme

In the data offloading game, the flow fi, i ∈ {1, 2} can
only be offloaded by SSP i, therefore SSP i can always set
the monopoly price cM to offload at least fi and obtain a
monopoly payoff umi given by

umi = fi(cM − c). (3)

To compete for serving the users in the overlapping area,
i.e. flow f12, each SSP will lower their offloading prices
down from cM. There is a trade-off between the volume of
offloading flow and the offloading price. When the price pi
drops to some value p̂i such that SSP i is indifferent between
offloading merely fi with price cM and offloading fi + f12
with price p̂i, which yields

(fi + f12)(p̂i − c) = umi ,

hence p̂i can be written as

p̂i =
1

fi + f12
(cMfi + cf12) . (4)

If SSP i continues to lower its price, the loss caused by
the lower price will exceed the profit gain by offloading
the extra f12. Thus it is better off by simply setting the
monopoly price cM to offload merely its monopoly amount
fi.

indifferent

set price:

set price:

Fig. 3: Uniform pricing strategy of SSP i when pj varies on
[c, cM]: if pj ∈ (p̂i, cM], SSP i will compete and set a price
pi = pj − ε; when pj ∈ [c, p̂i], SSP i will not compete by
reducing price any further and set monopoly price cM.

Therefore, p̂i is a threshold price for SSP i in its choice of
pricing strategies, see Fig. 3. Straightforwardly, we have the
following proposition to state the pricing rules of the SSPs.

Proposition 1. For each SSP i, such that i ∈ {1, 2}, any price
pi smaller than p̂i in (4) is a strictly dominated strategy for SSP
i.

Proof. If pi ∈ [c, p̂i), for any given pj the maximal payoff
SSP i can obtain will be (fi+f12)(pi−c), when SSP iwins the
overlapping flow. Since umi > (fi+f12)(pi−c),∀pi ∈ [c, p̂i),
thus SSP i can always be better off by merely offloading fi
at monopoly price cM.

3.2.4 Characteristics of the threshold price
Subsequently, we analyze the characteristics of the threshold
price p̂ defined in (4) as follows
(a) If overlapping flow f12→ 0 and fi

f12
→∞, i.e. there is

no overlapping between the two SSPs, each SSP will
serve as a monopoly in its coverage area and set the
monopoly offloading price cM.

(b) If overlapping flow f12→ ∞ and fi
f12
→ 0, i.e. APs

deployed by different SSPs are almost co-located, the
offloading game will degenerate to the Bertrand compe-
tition [32], where the game has a single PNE, in which
each SSP charges the price c.

(c) For any fixed overlapping flow f12, the SSP with a
larger monopoly flow fi will prefer to set a higher
offloading price. The SSP with a smaller fi is willing
to set a smaller offloading price and is more in the price
competition.

(d) For any fixed monopoly flow fi, such that i = {1, 2},
a larger overlapping flow (or overlapping area) f12
will aggravate the competition and drive down the
offloading prices.

4 ANALYSIS OF NASH EQUILIBRIA

In this section, we analyze the Nash equilibria in the data
offloading game described in Section 3. We show that there
is no PNE and prove the existence of the MNE with price
randomization. Without loss of generality, we assume that
fi ≥ fj(i 6= j), then p̂i ≥ p̂j .

4.1 Analysis of PNE

Since a strictly dominated action is not used in any Nash
equilibria, we can thus eliminate from consideration all the
strictly dominated strategies and only consider the strategy
profile pi ∈ [p̂i, cM] for SSP i, i ∈ {1, 2}. Next we analyze
the PNE in this game using the best response functions.

Given SSP j’s price strategy as pj ∈ [p̂j , cM], the best
response function of SSP i is given by

Bi(pj) =

{
cM if pj ∈ [p̂j , p̂i],

pj − ε if pj ∈ (p̂i, cM].
(5)

Also, given SSP i’s price strategy as pi∈ [p̂i, cM], SSP j’s best
response function is

Bj(pi) = pi − ε , for pi ∈ [p̂i, cM] . (6)

(a) SSP i’s best response function. (b) SSP j’s best response function.

Fig. 4: SSPs’ best response functions in the mobile data
offloading game, assuming fi ≥ fj and the small circle
indicates a point is excluded.
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Figure 4 shows the SSPs’ best response functions, from
which we can observe that the best response functions of the
two SSPs have no intersections, hence we state that there is
no PNE in this game by the following proposition.

Proposition 2. The data offloading game with uniform pricing
schemes has no pure strategy Nash equilibrium.

Proof. We can further prove that there is no pure Nash
equilibrium by the following arguments:
• No pair of strategies (p, p) with p ∈ [p̂i, cM] is a Nash

equilibrium because SSP j can always be better off by
slightly decreasing its price, and when p > p̂i, either
SSP is better off by slightly decreasing its price.

• No pair of strategies (pi, pj) with pi 6= pj , pi ∈ [p̂i, cM]
and pj ∈ [p̂j , p̂i] is a Nash equilibrium because SSP j
can always be better off by increasing its price pj as
long as it is still smaller than pi.

• No pair of strategies (pi, pj) with pi 6= pj , pi ∈ [p̂i, cM]
and pj ∈ (p̂i, ĉM] is a Nash equilibrium because the
SSP whose price is higher can increase its payoff by
decreasing its price to some value that is slightly less
than the other SSP’s price.

4.2 Analysis of MNE
In this subsection, we compute the MNE in the data offload-
ing game. For a game in which each player has a continuum
of actions in some interval, we can identify each player’s
mixed strategy with a cumulative probability distribution
(CDF) on the action interval [33]. In our data offloading
game, SSP i, i ∈ {1, 2} can choose any price in the interval
[c, cM], and the mixed strategy of SSP i is a CDF denoted by
Gi(p) over the interval [c, cM], where Gi(pi) represents the
probability that SSP i sets a price less than or equal to pi.

4.2.1 Symmetric data offloading game
Firstly, we investigate the case when fi = fj = f , and p̂i =
p̂j = p̂. For any price pair (pi, pj), such that pi, pj ∈ [c, cM],
SSP i’s payoff ui(pi, pj) satisfies ui(pi, pj) = uj(pj , pi), thus
the offloading game is a symmetric game. We establish the
existence of the MNE in such a symmetric data offloading
game by the next proposition.

Proposition 3. The symmetric data offloading game with f1 =
f2 = f has a mixed strategy Nash equilibrium pair (Gs, Gs), and
Gs is given by

Gs(p) =


f + f12
f12

p− p̂
p− c

if p ∈ [p̂, cM] ,

0 if p ∈ [c, p̂] ,

(7)

where p̂ = 1
f+f12

(cMf + cf12).

Proof. To investigate the possibility of such an equilibrium,
consider a symmetric mixed strategy pair (G,G), each SSP’s
expected payoff with p ∈ [c, cM] is given by

u(p) = G(p)(p− c)f + (1−G(p))(p− c)(f + f12), (8)

we look for an equilibrium such that

G(p̂) = 0 ,

G(cM) = 1 ,

u(p|p ∈ [p̂, cM]) ≥ u(p|p ∈ [c, p̂]) ,

(9)

1

c0 p̂

p

Mc

s ( )G p

(a) MNE strategy Gs.

c0 p̂

p

Mc

s( | )u p G

MNEu

(b) SSPs’ expected MNE payoff.

Fig. 5: MNE in the symmetric data offloading game, where
the mixed strategy Gs shown in (a) assigns positive prob-
ability only on the interval [p̂, cM], and any price on the
interval [p̂, cM] yields the SSP the same expected payoff as
shown in (b).

and any price in the interval [p̂, cM] yields the SSP the same
expected payoff. Therefore, the first order condition (FOC)
of Eq. (8) is given by

du(p)

dp
= −f12[G(p) +G′(p)(p− c)] + f1 + f12 = 0 .

Solve the FOC yields

Gs(p) =
f + f12
f12

p− p̂
p− c

, for p ∈ [p̂, cM] ,

and SSP’s expected payoff at equilibrium is give by

u(p) =

{
(f + f12)(p− c) if p ∈ [c, p̂) ,

(f + f12)(p̂− c) if p ∈ [p̂, cM] .
(10)

Thus, (Gs, Gs) as defined in (7) is a mixed strategy Nash
equilibrium.

Figure 5 shows the MNE strategy as defined in (7) and
the SSPs’ expected payoff at the corresponding equilibrium.
It is easy to observe that the MNE strategy Gs assigns zero
probability to any strictly dominated strategies in [c, p̂), and
is convex on the interval when p≥ p̂. Any price p∈ [p̂, cM]
gives the SSP the same expected payoff as uMNE = (f +
f12)(p̂− c), which is greater than the expected payoff when
SSPs’ set any price less than p̂.

4.2.2 Asymmetric data offloading game
For the case where fi 6= fj , we assume that fi > fj and
p̂i > p̂j . We can establish the MNE of the asymmetric data
offloading game by the next proposition.

Proposition 4. The asymmetric data offloading game with fi >
fj has a mixed strategy Nash equilibrium pair (Ga

i , G
a
j ), where

Ga
i and Ga

j are given by

Ga
i (p) =


1 if p = cM ,

fj + f12
f12

p− p̂i
p− c

if p ∈ [p̂i, cM) ,

0 if p ∈ [c, p̂i),

(11)

Ga
j (p) =


fi + f12
f12

p− p̂i
p− c

if p ∈ [p̂i, cM]

0, if? p ∈ [c, p̂i) .

(12)

Proof. See Appendix A.
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Fig. 6: MNE in the asymmetric mobile data offloading game.
Both SSPs assign zero probability for any price below p̂i;
SSP i’s expected payoff at MNE is the same to its monopoly
payoff, and SSP j’s expected payoff is greater than its
monopoly payoff.

Figure 6 illustrates the asymmetric MNE as defined in
(11) and (12), and the SSPs’ corresponding expected payoffs
at MNE. We can observe from Fig. 6b that SSP j also has
no incentive to price on the interval [p̂j , p̂i), since for SSP
j the strategy pj = p̂i − ε always strictly dominates any
price in [p̂j , p̂i) when pi ∈ [p̂i, cM]. At equilibrium, SSP i’s
expected payoff uMNE

i is equal to its monopoly payoff umi
as defined in (3), and SSP j’s expected payoff is greater than
its monopoly payoff. In particular, we have the following
remarks.

Remark 1. In the data offloading game with fi ≥ fj , at the
mixed strategy equilibrium, the expected payoffs of the SSPs are
given by

uMNE
i = (p̂i − c)(fi + f12), (13)

uMNE
j = (p̂i − c)(fj + f12), (14)

and uMNE
i ≥ uMNE

j , i.e. the player with a larger monopoly flow
has a higher equilibrium payoff in the open offloading market with
uniform pricing.

Remark 2. In the asymmetric data offloading game with fi >
fj , i 6= j, for any price p ∈ (p̂i, cM), the probability that SSP j
sets an offloading price no more than p is greater than SSP i.

This conclusion can be observed directly from Fig. 6
and the insights behind it is that the SSP with a smaller
monopoly is more aggressive and willing to set a lower
offloading price. Note that the notion Ga of the asymmetric
MNE in Proposition 4 is a little different from the symmetric
case. Firstly, SSP i’s equilibrium strategy Ga

i always assigns
a positive probability to cM which equals to fi−fj

fi+f12
, and

zero probability for any price below p̂i. Secondly, SSP j’s
equilibrium strategy Ga

j always assigns zero probability to
cM since the expected payoff at cM is smaller than uMNE

j

(refer to Appendix A).

5 ONE SHOT AUCTION MECHANISM

In Section 4, we have proved that there is no PNE in the
data offloading game, and the MNE cannot be implemented

in practice, due to the instability of the uniform pricing
scheme. This result motivates the introduction of the fol-
lowing payoff-equivalent one shot auction mechanism that
is simple to implement and has pure NEs which yield the
SSPs the same equilibrium payoffs to the expected payoffs
obtained at the above MNE. Due to its payoff equivalence
and simplicity, we expect this to be a “fair” choice by all
market participants (MNO and SSPs).

5.1 One shot auction mechanism

At the beginning of the time slot, both SSPs simultaneously
submit their bidding prices to the MNO, denoted as bi, i ∈
{1, 2}, where bi ∈ [p̂i, cM]. The SSP with a smaller bid will
win the auction and set the offloading price equal to his bid.
And the SSP who fails the auction will quit the competition
and set the monopoly offloading price cM. In the following,
we assume that perfect flow information is available for the
SSPs, where each SSP can observe the flow knowledge of
his competitor 4. Based on this auction mechanism, given
the bidding strategy of SSP j as bj , the payoff of SSP i with
a bid bi is given by

ui(bi, bj) =


fi(cM − c) if bi > bj ,

(fi + f12)(bi − c) if bi < bj ,

(fi + 0.5f12)(bi − c) if bi = bj ,

(15)

where bi ∈ [p̂i, cM],∀i ∈ {1, 2}. This auction mechanism can
guarantee that each SSP always has a payoff no less than his
monopoly payoff umi as defined in (3).

5.2 Existence of Nash equilibria

Similar to the analysis in Section 4.1, assume that fi>fj and
p̂i > p̂j , given SSP i’s bid bi, such that bi ∈ [p̂i, cM], the best
response function of SSP j is given by

Bj(bi) = bi − ε if bi ∈ [p̂i, cM], (16)

and the best response function of SSP i given bj is given by

Bi(bj) =


bj − ε if bj ∈ (p̂i, cM],

(p̂i, cM] if bj = p̂i,

[p̂i, cM] if bj ∈ [p̂j , p̂i) .

(17)

Note that, when bj = bi = p̂i, SSP i’s payoff is given as

ui(bj= p̂i, bi= p̂i) = (fi + 0.5f12)(p̂i − c),

which is smaller than umi . Therefore, SSP i can be better off
by bidding greater than p̂i, and is indifferent between any
value on (p̂i, cM], because it will loss the auction anyway.

We plot the SSPs’ best response functions relative to
different axes in Fig. 7, we can see that the one shot auction
game has two pure NEs, which can be concluded by the
following proposition.

Proposition 5. In the one shot auction offloading game, there
exist two pure Nash equilibrium (b∗i , b

∗
j ) = (p̂i + ε, p̂i) and

(b∗i , b
∗
j ) = (p̂i, p̂i − ε).

We can make the following observations from Fig. 7:

4. This can be the result of long term interactions with each other or
the SSPs can obtain the flow information from the MNO.
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Fig. 7: SSPs’ best response functions in the one shot auction
game with fi>fj . The best response function of SSP i is the
solid line and the rectangle area; that of SSP j is the dash
line. There exist two NEs in this auction game: (b∗i , b

∗
j )=

(p̂i + ε, p̂i) and (b∗i , b
∗
j ) = (p̂i, p̂i − ε).

(a) (b∗i , b
∗
j )=(p̂i + ε, p̂i) is the first equilibrium that SSPs

will achieve when they lower their bidding prices down
from cM. The SSP with a larger monopoly flow fi will
fail the auction and quit the competition to set the
monopoly offloading price cM. Therefore, at equilib-
rium, the offloading prices in the market are give by

(p∗i , p
∗
j ) = (cM, p̂i) .

(b) (b∗i , b
∗
j )=(p̂i, p̂i − ε) is the second equilibrium and the

SSP with a larger monopoly flow still fails the auction,
thus the equilibrium offloading prices are

(p∗i , p
∗
j ) = (cM, p̂i − ε) .

At both equilibria, the SSP with a larger monopoly flow
(here SSP i) will set the monopoly price cM and obtain a
payoff as

uAi = (cM − c)fi , (18)

which is equal to the monopoly payoff umi . However, SSP
j’s payoff will be slightly different at the two PNEs, and
there exists a dominant equilibrium for SSP j, which can be
demonstrated by the next proposition.

Proposition 6. For the two equilibria in the one shot auction
game with fi > fj , the equilibrium (b∗i , b

∗
j ) = (p̂i + ε, p̂i) is

dominated by the equilibrium (b∗i , b
∗
j ) = (p̂i, p̂i − ε) for SSP j.

Proof. As shown in Fig. 8, we plot the payoff of SSP j as it
varies with bi when it plays the two equilibrium strategies.

It’s easy to see that, when bi = p̂i, the payoff of SSP j
when it plays b∗j = p̂i and b∗j = p̂i − ε can be denoted as:

uj(bi= p̂i; b
∗
j = p̂i)=(p̂i− c)(fj + 0.5f12) ,

uj(bi= p̂i; b
∗
j = p̂i− ε)=(p̂i− ε−c)(fj + f12) ,

since ε is arbitrary small, hence uj(bi = p̂i; b
∗
j = p̂i − ε) >

uj(bi = p̂i; b
∗
j = p̂i).

Remark 3. The expected payoffs SSPs can obtain at MNE are
same to the equilibrium payoffs by one shot auction denoted by
uAi , i.e.

uMNE
i = uAi , for i ∈ {1, 2}. (19)

c ˆ
jp ib

12
ˆ( )( )i jp c f f 

ˆ
ip

( )j iu b

m

M( )j ju c c f 

Mc

(a) When b∗j = p̂i.

c ˆ
jp

ib

12
ˆ( )( )i jp c f f 

ˆ
ip

( )j iu b

Mc

m

M( )j ju c c f 

(b) When b∗j = p̂i − ε.

Fig. 8: SSP j’s payoff varies with bi while SSP j plays his
equilibrium strategies b∗j : when bi = p̂i, SSP j can be better
off by playing b∗j = p̂i − ε than b∗j = p̂i.

Proof. In the offloading game using one shot auction mech-
anism, assuming fi ≥ fj , the equilibrium offloading prices
in the market are (p∗i , p

∗
j ) = (cM, p̂i), thus SSPs’ equilibrium

payoffs are given by

uAi = (cM − c)fi ,
uAj = (p̂i − c)(fj + f12) .

Compare with Remark 1, it is easy to see that uMNE
i = uAi ,

for i ∈ {1, 2}.

This result suggests that such a mechanism is of real
interest to be accepted in practice, since both the MNO and
SSPs obtain the same expected equilibrium payoff as in the
case of classical price competition, and can serve as a simple
and effective economic tool in the offloading game.

6 STRATEGIC TOPOLOGICAL PLACEMENT PROB-
LEM

The above simple auction mechanism allows us to investi-
gate the complex question related to the strategic topological
placement of competing SSPs. An interesting question is
how should the SSPs deploy their APs strategically assum-
ing they compete in the future over uniform prices?

In practice, infrastructure deployment is not simultane-
ously, hence it makes sense to assume a first mover in the
placement problem. The logical timeline of this problem is
given in Figure 9, where in Phase I and Phase II, the two
SSPs deploy their APs 5, and in Phase III, given the topolog-
ical locations of the APs and the cellular flow information,

5. We assume that there is no AP deployed at the start of Phase I.

First mover 
deploys APs

Second mover 
deploys APs

Data offloading 
one shot auction mechanism

Phase I Phase II Phase III
time

0

Fig. 9: Logical timeline for the strategical topological place-
ment problem.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2832638, IEEE
Transactions on Mobile Computing

8

the two SSPs compete in prices to do offloading. We sum-
marize the results we need in Phased III from the previous
sections, as the equilibrium payoffs of the two competing
SSPs with monopoly flow of f1, f2, and overlapping flow
f12 are given by

u1 = (p̂1 − c)(f1 + f12) = f1(cM − c) ,

u2 = (p̂1 − c)(f2 + f12) = f1(cM − c)
f2 + f12
f1 + f12

,
(20)

where f1 ≥ f2. In the following, we will investigate this
strategic AP placement problem using a linear flow model
and a general 2D flow model, respectively. For simplicity,
we do not consider the AP deployment cost in this work.
We show the first mover in the AP placement game can
obtain a higher equilibrium payoff by deploying his APs to
cover more than half of the total cellular flow.

6.1 1D flow model

To study the placement behaviors of the SSPs, we first con-
sider a specific 1-dimension (linear) flow model, as shown in
Fig. 10, where the mobile cellular traffic (from single MNO)
is uniformly distributed only on some interval [0, L], with
total flow volume normalizes to 1. Assume that L = 1,
both SSPs {1, 2} intend to deploy APs on this interval [0, 1]
to offload cellular traffic from the MNO. APs deployed by
both SSPs are of similar characteristics, with a maximum
coverage length R = 2r, where 0.5 < R < 1. As such, each
SSP deploys only one AP. The “placement” of the AP is
defined by its center (middle point) x, i.e. if the AP is placed
at some point x∈ [0, 1], it covers the interval [x − r, x + r],
and the total cellular traffic within its coverage is given as

fAP = min(x+ r, 1)−max(0, x− r) , (21)

since there is no cellular flow outside the interval [0, 1].
Subsequently, we study the Nash equilibrium placement
strategies for the SSPs by finding the best response func-
tions.

6.1.1 Best response functions of SSPs
Assume that xi ∈ [0, 1] is the center of the AP deployed by
SSP i, such that i = 1, 2. Given SSP 1’s AP center x1 ∈ [0, 1],
then SSP 2’s best response function B2(x1) can be analyzed
from the following different cases:

0

AP deployed by SSP 1:

BS

L

AP deployed by SSP 2:

R

R

Fig. 10: The linear flow mode in the placement problem,
where cellular flow is uniformly distributed on the interval
[0, L], L = 1. APs deployed by the SSPs have a maximum
coverage length of R, and 0.5 < R < 1.

i. If x1 ∈ [0, 1 − 3r], i.e. r ≤ x1 + r ≤ 1 − 2r, there is at
least 2r uncovered line of flow and the best SSP 2 can
do is to simply deploy its AP without overlapping with
SSP 1. Therefore, SSP 2’s best response function B2(x1)
is given by

B2(x1) ∈ [x1 + 2r, 1− r] if x1 ∈ [0, 1− 3r] . (22)

ii. If x1 ∈ (1 − 3r, 0.5 − r], i.e x1 + r ∈ (1 − 2r, 0.5],
SSP 1 covers no more than half of the flow line. As
long as SSP 2 deploys its AP to cover the remaining
half flow line, the monopoly flow of SSP 2 will always
be f2 ≥ 0.5, which yields SSP 2 to be the player with
a larger amount of monopoly flow. Therefore, SSP 2
will be indifferent from not overlapping or overlapping
part with SSP 1. As a result, the best response function
B2(x1) is given by

B2(x1) ∈ [1−r, x1+2r] if x1 ∈ (1−3r, 0.5−r] . (23)

iii. If x1 + r > 0.5, x1 − r ≤ 0, SSP 1 covers more than
half of the flow line, but less than the size of the AP.
When x2 − r ≥ x1 + r, i.e., x2 ≥ x1 + 2r, there is no
overlapping with SSP 1 and SSP 2’s payoff is given by

unon2 (x2) = [1− (x2 − r)](cM − c) if x2 ∈ [x1 + 2r, 1] ,

and the maximal payoff can be obtained at x2 = x1+2r,
which yields

unon,max
2 = [1− (x1 + r)](cM − c) .

When x2 ≤ x1 + 2r, the coverage area of the two
SSPs starts to overlap. As shown in Fig. 11, when x2
decreases (moving to the left side), SSP2’s payoff u2(x2)
will increase at first, i.e., overlapping benefits SSP 2,
since he will win the overlapping flow in the auction.
However, excessive overlapping (when x2 < 0.5 + r)
will aggravate the price competition between the two
SSPs, and drive down equilibrium offloading prices
and payoffs. The optimal payoff can be achieved at
x2 = 0.5+r (see Appendix B.1 for the proof). Therefore,
SSP 2’s best response function can be denoted as:

B2(x1) = 0.5 + r if x1 ∈ (0.5− r, r] . (24)

iv. When x1 − r > 0 and x1 ≤ 0.5, if x2 ≥ x1 + 2r, there
is no overlapping between the two SSPs. Similarly, the

12 0f 

11 r 0.5 r 1 2x r11 x1x

2 2( )u x

2 1f f

2 1f f

2x

Fig. 11: SSP 2’s payoff varies with the location of his AP in
case iii: overlapping befits SSP 2 first, then the payoff loss
caused by excessive overlap may exceed the gain and drive
down his payoff.
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maximal payoff of SSP 2 can be obtained at x2 − r =
x1 + r and yields

umax
2 = [1− (x1 + r)](cM − c) if x2 ∈ [x1 + 2r, 1].

When x2 ≤ x1 + 2r, as x2 decreases, its coverage starts
overlapping with SSP 1’s. And the maximal payoff can
be obtained at x2 = 0.5(1 + x1 + r) (see Appendix B.2
for proof). And SSP 2’s best response function is given
by

B2(x1) =
1

2
(1 + (x1 + r)) if x1 ∈ [r, 0.5] . (25)

When x1 > 0.5, the analysis of the best response functions
will be similar to the cases i to case iv. In summary, given the
strategy of SSP 1 x1 ∈ [0, 1], the corresponding best response
function of SSP 2 B2(x1) can be summarized as follows:

B2(x1)



∈ [x1 + 2r, 1− r] if x1 ∈ [0, 1− 3r],

∈ [1− r, x1 + 2r] if x1 ∈ (1− 3r, 0.5− r],
= 0.5 + r if x1 ∈ (0.5− r, r],

=
1

2
[1 + (x1 + r)] if x1 ∈ (r, 0.5],

=
1

2
(x1 − r) if x1 ∈ (0.5, 1− r],

= 0.5− r if x1 ∈ (1− r, 0.5 + r],

∈ [x1 − 2r, r] if x1 ∈ (0.5 + r, 3r],

∈ [r, x1 − 2r] if x1 ∈ (3r, 1] .

(26)

Note that in case i and case ii, when the first mover (SSP
1) covers no more than half of the flow line, not overlapping
is always a best response strategy for SSP 2. And in case
iii and case iv, when the SSP 1 takes more than half of the
flow line, SSP 2 will prefer to overlap with SSP1 properly to
avoid excessive overlapping.

6.1.2 Analysis of NE
We also can obtain the best response function of SSP 1 given
the center of SSP 2’s AP x2 with a symmetric formula of

1 3r r0.5 r 0.5 2r 1 r 0.5 r 3r 10

0.5 r

r

0.5

2r

1 r

0.5 r

1

1 2r

1
(1.5 )

2
r

1
(0.5 )

2
r

2 1( )B x

1 2( )B x

1x 

2x


NE：

NE：

* *

1 2( , ) (0.5 ,[1 ,0.5 ])x x r r r   

* *

1 2( , ) ([0.5 , ],0.5 )x x r r r  

Fig. 12: SSPs’ best response functions in the strategic place-
ment game. The best response function of SSP 1 is solid
and that of SSP 2 is dash. When x1 ≤ 0.5, there exist two
equilibrium placement scenarios.

(26), and plot the above best response functions in Fig. 12 to
establish the Nash equilibria of the strategic AP placement
game. It is easy to observe that there exist two equilibrium
placement scenarios when x1 ≤ 0.5 as : (x∗1, x

∗
2) = (0.5 −

r, [1− r, 0.5+ r]) and (x∗1, x
∗
2) = ((0.5− r, r], 0.5+ r). Here,

we only analyze the equilibria when x1 ≤ 0.5, since the
equilibria placement scenarios when x1 > 0.5 are symmetric
to the case of x1 ≤ 0.5.

Figure 13 shows the equilibrium placement scheme cor-
responding to (x∗1, x

∗
2) = (0.5− r, [1− r, 0.5 + r]). It can be

observed that, if SSP 1 places his AP at x∗1 = 0.5− r, i.e., he
only covers half of the flow line, then at equilibrium SSP 2
will be indifferent from not overlapping or overlapping as
long as he covers the whole other half. In this case, SSP 2
will always be the one with a higher amount of monopoly
flow, therefore, as long as he covers the remaining half line,
overlapping has no effects on his expected payoff, which is
given by

u1D2 = 0.5(cM − c) , (27)

which equals u1D2 . However, as the overlapping areas in-
creases, the payoff of SSP 1 will decrease. Particularly, if
the SSP 2 plays Nice by choosing x∗2 = 0.5 + r, i.e., not
overlapping with SSP 1, then the equilibrium payoff of SSP
1 is give by

u1D1 (x∗1 = 0.5− r, x∗2 = 0.5 + r) = 0.5(cM − c) .

And if SSP 2 plays Adverse by overlapping as much as he
can and maintains the same payoff, i.e., x∗2 = 1−r, then SSP
1’s equilibrium payoff is given by

u1D1 (x∗1 = 0.5− r, x∗2 = 1− r) = 1

4r
0.5(cM − c),

and 4r > 1, hence u1D1 (x∗1 = 0.5 − r, x∗2 = 1 − r) <
u1D1 (x∗1 = 0.5 − r, x∗2 = 0.5 + r), i.e., SSP 1 is worse off at
the equilibrium. To reduce the possibility of payoff loss, as
the first mover, SSP 1 can choose x∗1 ∈ (0.5− r, r], specially
if he plays Adverse by setting x∗1 = r as shown in Fig. 14, in
which equilibrium, SSP 2 will set x∗2 = 0.5 + r, thus SSP 1
is guaranteed to have a payoff equal to u∗ = 0.5(cM − c).
We can illustrate the strategic placement game with SSPs’
possible actions as {Adverse, Nice} using figure 15, where
the values in each box are the SSPs’ payoffs to the strategy

0

1

0.5

SSP 2 plays 
*

1 0.5x r  *

2 0.5x r 

*

2 1x r 
0

1
SSP 2 plays 

Nice

Adverse

Fig. 13: Equilibrium AP placement schemes in the line flow
model, when SSP 1 plays Nice by setting x∗1 = 0.5− r.

0
1

0.5

*

2 0.5x r 

*

1x r

Fig. 14: Equilibrium AP placement schemes in the line flow
model, when SSP 1 plays Adverse by setting x∗1 = r.
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file to which the box corresponds, with the first mover’s
payoff listed first.

1

2  2
Nice

Nice Nice

Adverse

AdverseAdverse

* *1 ,
2

u u
R

* *,u u * *1,
2

u u
R

* *2(1 ) , 2(1 )R u R u 

*
1
*
1

: 0.5

:

Nice x r

Adverse x r

  



SSP 1 SSP 2

*
2
*
2

: 0.5

: 1

Nice x r

Adverse x r

  


 

Fig. 15: The strategic placement game with SSPs’ possible
actions as {Adverse, Nice}: if the first movers plays Nice by
setting x∗1 = 0.5− r, then the second mover can play Nice or
Adverse and obtain the same payoff as u∗; if the first mover
plays Adverse by setting x∗1 = r, then the best response of
the second mover is to play Nice.

It is easy to observe that if the first movers plays Nice by
setting x∗1 = 0.5−r, then the second mover can play Adverse
(x∗2 = 1 − r) to make the first player worse off without
reducing his own profit; if the first movers plays Adverse
by setting x∗1 = r, then the second mover can play Nice
obtaining a payoff 1

2Ru
∗, or play Adverse with payoff 2(1 −

R)u∗, where 2(1 − R) < 1/2R, thus his only best response
of the second mover is to play Nice. It’s easy to observe that
there exist two pure NEs in this game: (Adverse, Nice) and
(Nice, Adverse), but only one sub-game perfect NE (SPNE):
(Adverse, Nice) using backward induction. Therefore, we can
state that the first mover in this game has the advantage to
obtain a higher payoff by the following proposition.

Proposition 7. The first mover in the strategic placement game
of the linear user traffic model can deploy his AP to cover more
than half of the flow line and obtain a higher equilibrium payoff.

6.2 2D flow model

In this section, we study the strategic topological placement
game using a 2-dimensional (2D) flow model. Consider
a 2D area with normalized cellular traffic 1, in this case,
we do not investigate how the individual AP is designed
or deployed, instead we’re only interested in the optimal
volume of cellular flow that the SSPs choose to cover 6.

As shown in Fig. 16, assume that the first SSP enters
the market and deploys his APs to cover f1 cellular traffic,
where f1 ∈ [0, 1]:

a. If the second SSP chooses to not overlap with the first
one by covering all the remaining area and offloading
at monopoly price cM, the payoff of the second SSP is
given by

unon,2D2 = (1− f1)(cM − c). (28)

b. If the second SSP chooses to overlap with the first
player such that the overlapping amount of flow to

6. Here, We do not care about the cellular flow distribution in the 2D
area, we only know that the total volume of traffic equals 1. And we
assume zero deployment cost.

0.5

SSP 1

0.5

1f

SSP 1

0.5

1f

SSP 2

2f

12f

Total flow=1

Fig. 16: Deployment game in the 2D flow model: SSP 1
enters the market first and choose to deploy his APs in order
to cover f1 ∈ [0, 1] amount of cellular flow; then SSP 2 enters
the market and deploy his APs, where f12 is the overlapping
amount of flow.

be f12 ∈ (0, f1]. Then we have the renewed monopoly
flow f ′1 = f1− f12 and f ′2 = 1− f1. As the overlapping
flow f12 increases, the monopoly flow of the first mover
decreases, and the monopoly flow of the second mover
remains the same. When f12 > 2f1 − 1, we have
f ′2 > f ′1, and the corresponding payoff of the second
mover is the same as the non-overlapping case unon,2D2 .
Therefore, the payoff of the second SSP is summarized
by

u2(f12) =


f ′2 + f12
f ′1 + f12

f ′1(cM − c) if f12 ≤ 2f1 − 1,

f ′2(cM − c) if f12 > 2f1 − 1 ,

yields the maximal payoff of the second SSP as

u2D2 =
cM − c
4f1

, when f∗12 = f1 − 0.5 . (29)

Given (29), the optimal coverage flow for the first SSP is
f∗1 > 0.5, and the renewed monopoly flow of the first mover
is always f ′1 = 0.5. The equilibrium payoffs for the two SSPs
are given by

u2D1 = 0.5(cM − c), where f∗1 > 0.5 ,

u2D2 =
cM − c
4f∗1

.
(30)

Thus, the best response function of SSP 2 in terms of f∗12
given f1 ∈ [0, 1] can be give as:

f∗12(f1) =

{
[0, f1] if f1 ∈ [0, 0.5],

f1 − 0.5 if f1 ∈ (0.5, 1].
(31)

It’s easy to observe that:

• If the first mover plays Nice by only covering half of the
total flow, i.e. f∗1 = 0.5, then he will be worse off if the
second mover plays Adverse by greedily overlapping
with f12 = f1.

• As long as the first mover covers more than half of the
flow volume, excessive covering will not increase his
payoff but will harm the profit of the second SSP.

Note that if we consider about the deployment cost of
the APs, then the first mover will not be too greedy, since
excessive deployment will only increase his deploy cost.
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(a) Here, f12 = 30.
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(b) Here, f12 = 130.

Fig. 17: Symmetric MNE strategy by price discretization
comparing with theory MNE strategy Gs as defined in
Eq.(7).

7 NUMERICAL RESULTS

This section presents some of numerical results to verify our
theoretical analysis of the data offloading and the auction
game.

7.1 Existence of MNE
7.1.1 Symmetric MNE
We discretize the price on interval [c, cM] to find the mixed
strategy Nash equilibrium and compare with Gs defined in
(7). In our simulation, we fix f1 = f2 = 70 and investigate
the equilibrium strategy with a small overlapping flow
f12 = 30 in Fig. 17a, and a large overlapping flow f2 = 130
in Fig. 17b. From these figures, we observe that the threshold
price decreases as f12 increases, and the MNE obtained
by price randomization match well with the MNE Gs as
defined in (7).

7.1.2 Asymmetric MNE
We discretize the price to find the mixed strategy Nash equi-
librium in the asymmetric offloading game when f1 > f2,
and compare with the equilibrium strategy defined in (11)
and (12). In our simulation, we fix f1 = 60, f12 = 40, and
study the MNE varying with the volume of f2 ∈ {10, 50},
as shown in Figure 18. It is easy to observe that, for any
value p ∈ [p̂1, cM], the cumulative probability that SSP 2
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Ga
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2 : MNE strategy of SSP 2 in theory

(a) Here, f2 = 10.
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1 : MNE strategy of SSP 1 in theory

Ga
2 : MNE strategy of SSP 2 in theory

(b) Here, f2 = 50.

Fig. 18: Asymmetric MNE strategy by price discretization
comparing with theory MNE strategy Ga as defined in
Eq.(11) and (12) .

prices below this value is greater than SSP 1. Because with
a smaller monopoly flow, SSP 2 is more aggressive in the
competition, and willing to set a smaller price to win the
overlapping flow.

7.2 Existence of PNE in the one shot auction game
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(b∗1, b
∗

2) = (5.61,5.60)
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(b∗1, b
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2) = (5.60,5.59)

Fig. 19: Pure equilibria in the one shot auction offloading
game, when f1 = 20, f2 = 15, f12 = 5, c = 4, cM = 6, and
ε = 0.01. This game has three NEs: (b∗1, b

∗
2) = (5.60, 5.59),

(b∗1, b
∗
2) = (5.61, 5.60) and (b∗1, b

∗
2) = (5.62, 5.61).



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2832638, IEEE
Transactions on Mobile Computing

12

This subsection illustrates the pure equilibria in the one
shot auction offloading game as shown in Fig. 19, where
f1 = 20, f2 = 15, f12 = 5, c = 4, cM = 6, and ε = 0.01. The
threshold prices are p̂1 = 5.60 and p̂2 = 5.50. There exist
three PNEs in this auction game: (b∗1, b

∗
2) = (5.60, 5.59),

(b∗1, b
∗
2) = (5.61, 5.60) and (b∗1, b

∗
2) = (5.62, 5.61). We can

conclude the NEs in Table 1, where b∗i , p
∗
i , and ui denote

the equilibrium bid, the equilibrium offloading price, and
the corresponding payoff for the SSPs, respectively. The first
two equilibria in the simulation are consistent with the the-
ory NEs as claimed in Proposition 5. The third equilibrium
(b∗1 = p̂1 + 2ε, b∗2 = p̂1 + ε) results from the value of the
parameter ε.

In the previous analysis, we assume that ε is some
infinite small positive number. However, in realistic charg-
ing and pricing systems, ε cannot be infinitely small. In
our numerical results, we consider ε as the smallest price
interval based on which the SSPs can adjust theirs bids.
Therefore, in the simulation, due to different value of ε, it
is possible that there are more than two equilibria.

TABLE 1: Three pure equilibria in the one-shot auction
offloading game, and the corresponding equilibrium bids
b∗i , offloading prices p∗i , and payoffs ui of the SSPs.

SSPs

NE1 NE2 NE3

(p̂1, p̂1 − ε) (p̂1 + ε, p̂1) (p̂1 + 2ε, p̂1 + ε)

b∗i p∗i ui b∗i p∗i ui b∗i p∗i ui

SSP1 5.60 6 40 5.61 6 40 5.62 6 40

SSP2 5.59 5.59 31.8 5.60 5.60 32 5.61 5.61 32.2

7.3 Linear deployment game simulation
In this subsection, we provide the simulation results of
the linear deployment game. We consider the equilibrium
placement scheme where x∗1 = 0.5− r, x∗2 ∈ [1− r, 0.5 + r].
When the first player chooses to cover only half of the total
flow, the second mover can play Nice by not overlapping
or Adverse by overlapping as much as he can, which can
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Fig. 20: The corresponding overlapping flow f12 and SSPs’
equilibrium payoffs u1, u2 vary as x∗2 ∈ [1 − r, 0.5 + r] and
x∗1 = 0.5− r, where r = 0.3, L = 1.
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Fig. 21: The SSPs’ deployment game in 2D flow model: SSP
1 chooses coverage f1 ∈ [0, 1], and the second mover SSP
2 plays his best response strategies to maximize his payoff,
which he can choose between Nice and Adverse for the same
payoff.

be observed from Fig. 20, as the overlap increases, the
equilibrium payoff of the second mover remains the same,
while the equilibrium payoff of the first player decreases.
Therefore, as the first player enters the offloading market, to
reduce the possibility of profit loss, the first mover should
cover more than half of the flow to obtain a higher payoff.

7.4 2D deployment game simulation
In this subsection, we consider a 2D flow model as discussed
in Section 6.2 and show that the first mover in the strategic
deployment game has the advantage to obtain a higher
payoff. As shown in Fig. 21, given the first mover’s strategy
f1 ∈ [0, 1], the second player can obtain the maximal payoff
u2 by playing his best response strategies. When the first
mover plays Nice by covering only half of the area, i.e.
f1 = 0.5, if the second SSP plays Nice by non-overlapping,
they both obtain the same payoff; If the second SSP plays
Adverse by overlapping as much as possible, i.e. f∗12 = f1,
then u1 drops below u2. Therefore, the first SSP enters this
market will place his APs to cover more than half of the total
traffic to avoid the possible payoff loss.

8 CONCLUSION

This paper studies the economics of mobile data offloading
through SSPs. We consider a cellular network with sin-
gle MNO and two SSPs with overlapping coverage areas
implementing uniform pricing schemes, where each SSP
charges a uniform price for serving all the users within
its coverage. We show that (a) a larger overlapping area
will intensify the price competition between the SSPs and
drive down the offloading prices in the market. (b) Simple
uniform pricing scheme might be unstable and impractical
to perform. (c) The proposed one shot auction mechanism is
simple to implement and payoff-equivalent with the MNE
in the standard free competition market. (d) The first mover
in the strategic topological placement will deploy his APs to
cover more than half of the cellular flow and obtain a higher
equilibrium payoff.
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There are a few limitations in our work. Our results
rely on the assumption that the network traffic f1, f2, f12
information is available (as common knowledge ) for all the
players and the offloading capacity of the APs is unlimited,
which may not be practical in the realistic scenarios. There-
fore, investigating the problem when there is only partial
flow information available for the SSPs and constrained
offloading capacity of APs will be interesting, which we
leave as a future work. Another future work is to consider
the scenario where the serving cost of SSPs are different, and
that the deployment cost of new APs is not negligible.
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