
Game-Theoretic Approach to Self-Stabilizing
Distributed Formation of Minimal

Multi-Dominating Sets
Li-Hsing Yen,Member, IEEE and Zong-Long Chen

Abstract—Dominating set is a subset of nodes called dominators in a graph such that every non-dominator nodes (called dominatee)

is adjacent to at least one dominator. This paper considers a more general multi-dominating problem where each node i, dominator or

dominatee, is required to have at least ki neighboring dominators, and different node can have different ki value. We first propose a

game design toward this problem. This game is self-stabilizing (i.e., it always ends up with a legitimate state regardless of its initial

configuration). The obtained result is guaranteed minimal (i.e., it contains no proper subset that is also a multi-dominating set) and

Pareto optimal (we cannot increase the payoff of some player without sacrificing the payoff of any other). We then point out challenges

when turning the design into a distributed algorithm using guarded commands. We present an algorithm that is proved weakly

stabilizing. Simulation results show that the proposed game and algorithm produce smaller dominating sets, k-dominating sets, and

multi-dominating sets in various network topologies when compared with prior approaches.

Index Terms—Dominating set, self-stabilization, distributed algorithm, game theory

Ç

1 INTRODUCTION

A distributed system consists of multiple processes
interconnected by communication links. It can be

modeled as a connected undirected graph where nodes
represent processes and edges represent communication
links between processes. Given a connected undirected
graph G ¼ ðV;EÞ, a set S � V is a dominating set if every
node in V � S is adjacent to some node in S. Nodes in S
are dominators while those in V � S are dominatees. Finding
a dominating set with minimum cardinality (called a mini-
mum dominating set) is NP-hard [1]. A dominating set S is
minimal (called a minimal dominating set or MDS) if it con-
tains no proper subset that is also a dominating set. Mini-
mal dominating sets may not be minimum dominating
sets. Dominators in a distributed system may represent
servers or proxies that provide some type of services to
adjacent dominatees. Typical services include message
queuing or forwarding, data storage or backup, and shar-
ing of computation load.

In some applications, a process may demand a service
that is beyond the capacity of a single server or proxy. Even
if a single server or proxy suffices, a process may seek for
two or more neighboring servers to tolerate a crash of a sin-
gle server. The demand of higher quality of service (QoS)
leads to the definition of k-domination. A set of nodes is a k-
dominating set if every dominatee is adjacent to at least k

dominators, where k is a fixed constant for all dominatees1

[3], [4]. When k ¼ 1, k-domination reduces to the traditional
1-domination (i.e., the dominating set).

Harary and Haynes [5] introduced a variant of k-domi-
nation called k-tuple dominating set. A subset of nodes
comprise a k-tuple dominating set if every node, domina-
tor or dominatee, is dominated by at least k dominators.
Here (and in the definition of multi-dominating set which
will be introduced shortly) the domination by a domina-
tor to itself counts. Therefore, each dominator is in fact
required to have k� 1 neighboring dominators, and
1-tuple domination problem reduces to the classical single
domination problem. In [6], Jia et al. further considered
multi-dominating set problem, which extends the k-tuple
domination problem by allowing different nodes to have
different domination requirements. For a distributed sys-
tem consisting of n nodes, multi-domination can be
expressed as K-domination, where K ¼ ðk1; k2; . . . ; knÞ is
a tuple of integers that represent the domination require-
ment of every node. A K-dominating set with every ki in
K larger than or equal to k is also a k-dominating or
k-tuple dominating set, but the opposite does not hold. In
this regard, K-domination represents a more general QoS
requirement. Fig. 1 shows an example that illustrates the
mentioned variants of dominating set.

A distributed algorithm is self-stabilizing if starting from
any initial state (possibly illegitimate), the algorithm even-
tually enters a legitimate state and remains in the set of
legitimate states [7]. Self-stabilization provides a paradigm
for designing a distributed algorithm that tolerates arbitrary
transient faults. Several self-stabilizing protocols for the

� The authors are with the Department of Computer Science and Information
Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan.
E-mail: lhyen@nuk.edu.tw, erice1211@gmail.com.

Manuscript received 13 Sep. 2013; revised 6 Dec. 2013; accepted 6 Dec. 2013.
Date of publication 15 Jan. 2014; date of current version 14 Nov. 2014.
Recommended for acceptance by D. Manivannan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.2297100

1. This definition differs from that in [2], where every node is
required to have a dominator at distance at most k from it.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014 3201

1045-9219� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

one-dominating [8], [9], [10], [11], [12] and k-dominating
[13], [14] set problem have been proposed (We refer the
reader to [15] for a recent survey). However, to the best of
the author’s knowledge, there is no deterministic self-stabi-
lizing algorithm for theK-domination problem.2

This paper considers the minimal K-domination set
problem under the framework of game theory. Game the-
ory has been widely used in the study of strategies for play-
ers participating in a competition where players have
conflicting benefits or goals. A game model consists of a
player set, a strategy set for each player, and a utility func-
tion defined for each player. In the proposed approach,
nodes modeled as autonomous players seek their own
interest by making their strategies (decisions of being a
dominator or not) based on local information. In this con-
text, neighboring nodes have conflicting interest and one’s
strategy may cause subsequent responses (strategy
changes) from neighboring nodes. Our goal is to design a
decentralized self-stabilizing algorithm that identifies a
minimal K-domination set through the use of incentives in
the game. Although no centralized mechanism coordinates
actions among these players, the mathematic framework
provided by game theory helps us derive stability, correct-
ness, and efficiency properties of the proposed game. Most
existing self-stabilizing algorithms are expressed using
Dijkstra’s guarded command control structure [16], which
imposes memory access constraints that make the realiza-
tion of the game design as a distributed algorithm a chal-
lenging task. We identify the challenges and propose a
solution. The proposed algorithm is proved weakly stabi-
lizing [17] and can hopefully prevent the game from being
trapped in inferior solutions. We conducted simulations to
evaluate the proposed approach under various types of
network topologies. Considered topologies include unit
disk graph (UDG) [18], the Erd€os-R�enyi (ER) model [19],
the Watts-Strogatz (WS) model [20], and the Barab�asi-
Albert (BA) model [21]. Simulation results indicate that
the proposed approach outperforms existing one- and
k-domination algorithms in the size of dominating sets.

The contribution of our work is twofold. First, we devise
a decentralized solution that finds a minimal multi-domi-
nating set under the framework of game theory. The pro-
posed approach is general in the sense that it also applies to
single-domination, k-domination, and k-tuple domination
problems. Second, we successfully convert the game design
into guarded commands that are proved weakly stabilizing.
This design paradigm would stimulate subsequent studies
on related problems.

The remainder of this paper is organized as follows.
Background knowledge and related work are presented in
Section 2. Section 3 presents the proposed game-theoretic
approach to the K-domination problem with rigorous
proof. Section 4 discusses challenges when turning the
game design into a distributed algorithm and presents a
solution. In Section 5, performance evaluations of the pro-
posed approach are presented in comparisons with other
alternatives. Section 6 concludes this paper.

2 BACKGROUND AND RELATED WORK

Distributed algorithms differ from each other in many
aspects. One possible classification of distributed algo-
rithms is based on the timing of events in the system [22].
Processes running a synchronous distributed algorithm per-
form communication and computation in perfect lock-step
synchrony. On the other hand, processes executing an
asynchronous distributed algorithm can take steps in an
arbitrary order and at arbitrary relative speeds. Inter-pro-
cess communication models also differ for different dis-
tributed algorithms. In the shared memory model, processes
communicate with each other via common variables or
registers. In the message-passing model, processes commu-
nicate by sending and receiving messages through com-
munication channels.

Self-stabilization for a system can be defined with respect
to a predicate over all states of the system [23]. The predi-
cate under consideration specifies all correct or legitimate
states of the system. A distributed algorithm is self-stabiliz-
ing with respect to the predicate if the following two condi-
tions hold:

� Convergence. Starting from arbitrary state (possibly
illegitimate), the algorithm eventually reaches a
legitimate state.

� Closure. Any state following a legitimate state is also
legitimate.

Self-stabilizing algorithms usually assume some type of
execution models that can be characterized by the presence
of a particular scheduler or daemon. In a central daemon exe-
cution model, only one process can execute at a time. With a
synchronous daemon, all processes are scheduled to execute
in parallel, which is a perfect match for a synchronous dis-
tributed algorithm. A distributed daemon subsumes the afore-
mentioned models in the sense that any non-empty subset
of processes can execute in parallel. Generally speaking, the
major challenge in designing a distributed algorithm under
a synchronous or distributed daemon lies in the handling of
concurrent movements when such movements can break
desired property (correctness or convergence) of the algo-
rithm. A key to this handling is to break symmetry among
nodes that are eligible to move, which can be done proba-
bilistically [6] or by assigning a unique identifier to each
node that represents its moving priority [10], [11], [12].

Many self-stabilizing algorithms for the minimal domi-
nating set problem have been proposed in the literature.
Due to space limitation, we present our literature review in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2013.2297100.

Fig. 1. A connected undirected graph, where fp1; p4g is a dominating set,
fp2; p3; p5g is a two-dominating set, fp1; p3; p4; p5g is a two-tuple dominat-
ing set, and fp1; p3; p5g is aK-dominating set withK ¼ ð2; 1; 2; 2; 1Þ.

2. The approach proposed in [6] is a randomized algorithm and is
not self-stabilizing.

3202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

A game G can be formulated as G ¼ ½P ; fSigni¼1; fuigni¼1�,
where P ¼ fp1; p2; . . . ; png is the player set consisting of all n
participants in the game, fSig defined for each pi is pi’s strat-
egy set (the collection of all pi’s feasible decisions), and ui

defined for each pi is pi’s utility function with respect to
some game result. The strategy space of the game
S ¼ S1 � S2 � � � � � Sn is the Cartesian product of all strat-
egy sets. A strategy profile C ¼ ðc1; c2; . . . ; cnÞ 2 S is a tuple
of n strategies, where ci 2 Si. For a specific pi, we may
express C as C ¼ ðci; C�iÞ, where C�i ¼ ðc1; c2; . . . ;
ci�1; ciþ1; . . . ; cnÞ denotes the set of all player’s strategies
other than pi’s. Utility function uiðCÞ can be different for dif-
ferent player pi, which represents pi’s payoff (utility) with
respect to a particular strategy profile C. Players are selfish
in the sense that the only goal of all the players is to maxi-
mize their own payoff. Therefore, the objective of the game
can be expressed asmaxci2Siuiðci; C�iÞ for all pi 2 P .

The game under consideration is a noncooperative dynamic
game. In a noncooperative game, players do not cooperate
with each other to seek the system’s benefit. A game is
dynamic if players take turns to make their decisions. This
is to model the asynchronous nature of process’s execution
and communication speeds. Here we assume that this game
is of perfect information, meaning that every player knows
what moves have already been made by all other players.
Later we shall relax this assumption.

A Nash equilibrium is a strategy profile where no player
can further increase its own utility by unilaterally changing
its choice.

Definition 1 (Nash equilibrium). Given a game G ¼ ½P ;
fSigni¼1; fuigni¼1�, a strategy profile C� ¼ ðc�1; c�2; . . . ; c�nÞ is a
Nash equilibrium if 8i 2 f1; 2; . . . ; ng : 8ci 2 Si :: ui

ðc�i ; C�
�iÞ 	 uiðci; C�

�iÞ.
It is well known that Nash equilibria are not necessarily

desired results. In fact, global optima in games may not
even exist. Nevertheless, we can seek Pareto optimal results.

Definition 2 (Pareto optimal). A strategy profile
C ¼ ðc1; c2; . . . ; cnÞ is Pareto optimal if and only if there exists
no other strategy profile C0 ¼ ðc01; c02; . . . ; c0nÞ such that
8i 2 f1; 2; . . . ; ng : uiðC0Þ 	 uiðCÞ and 9j 2 f1; 2; . . . ; ng :
ujðC0Þ > ujðCÞ.
Few studies in the literature blend game theory with self

stabilization. Cohen et al. [24] proposed a distributed algo-
rithm that allows selfish processes seeking their maximal
payoffs to form a spanning tree. The proposed algorithm
achieves weak stabilization, which means that starting from
an arbitrary state, there exists at least one sequence of state
transitions that leads the system to a stable state. Gouda [17]
shows that weak stabilization of a system implies stabiliza-
tion of the same system under some reasonable conditions.

3 MULTI-DOMINATION GAME

3.1 Game Design

This section presents a game-theoretic distributed approach
to the multi-dominating set problem. A realization of the
proposed game in distributed systems shall be presented in
the next section. The game design was inspired from and a
generalization of our previous work on target coverage

problem in wireless sensor networks [25]. We assume a dis-
tributed system consisting of n processes (nodes) intercon-
nected by communication links. We define multi-domination
game as follows. Let P ¼ fp1; p2; . . . ; png denote the player
set that contains all nodes in the system. Let K ¼ ðk1;
k2; . . . ; knÞ be an n-tuple of domination requirement, where
ki 	 1 is the number of dominations required by node pi.
We assume that the domination requirement specified by K
can be guaranteed if all nodes are dominators. This is a nec-
essary condition for the existence of solutions to the multi-
domination problem. A player’s role of being a dominator
or dominatee is represented by 1 or 0, respectively, so each
player pi has a strategy set Si ¼ f0; 1g. A strategy profile
ðc1; c2; . . . ; cnÞ, where ci 2 Si, can thus be coded as a bit vec-
tor b1b2 . . . bn, where bi ¼ ci, 1
 i
 n. The goal of the game
design is to define uiðCÞ for every pi 2 P such that the domi-
nating game G ¼ ½P ; fSigni¼1; fuigni¼1� with objective
maxci2Siuiðci; C�iÞ for all pi 2 P renders a self-stabilizing
distributed approach that identifies a minimal multi-domi-
nating set. For the ensuing discussions, most of the symbols
used are summarized in Table 1.

Players in this game do not consider and plan for
their opponent’s reactions when choosing their strate-
gies. The reason is that the game does not presume any
particular decision-making sequence among players to
reflect the non-deterministic nature of event timing in an
asynchronous distributed algorithm. Consequently, the
number of possible reactions and sequences of subse-
quent responses corresponding to a particular strategy
may be numerous. Therefore, it is not practical for play-
ers to perform backward induction. Instead, players in
this game are myopic in the sense that a player chooses a
strategy simply because that strategy increases its current
utility. Formally, the best response function for player pi is
riðC�iÞ ¼ fci 2 Sij8c0i 2 Si : uiðci; C�iÞ 	 uiðc0i; C�iÞg. Note
that players can change their strategies whenever such
changes increase their payoffs. It is theoretically possible
that such strategy changes never stop (given some utility
definition) and the game does not end up with a stable
solution.

The proposed game design meets all the following
requirements through the definition of a utility function for
all players:

� Self-stabilization. Starting from any configuration,
the game should always end up with a legitimate
state (a state where the multi-domination require-
ment is met).

TABLE 1
Partial List of Notations

YEN AND CHEN: GAME-THEORETIC APPROACH TO SELF-STABILIZING DISTRIBUTED FORMATION OF MINIMAL... 3203

� Small size. The cardinality of the multi-domination
set identified by the game should be as small as pos-
sible. The bottom line is: the resulting set should be
minimal (i.e., it should not contain any subset that is
also a multi-dominating set.)

� Time efficiency. The time for the game to stabilize
should be reasonably short.

The task of defining uiðCÞ for every pi 2 P centers on
how much profit a dominator should gain. That profit
should be sufficiently high to meet the domination
requirement. On the other hand, the profit should be suf-
ficiently low to minimize the size of the multi-domination
set. Our design for the utility function attempts to capture
the real contribution of a dominator. Formally, given
C ¼ ðc1; c2; . . . ; cnÞ, define

viðCÞ ¼
X
pj2Mi

cj (1)

for each player pi, where Mi ¼ fpig [Ni is the closed neigh-
bor set of pi. Also define giðCÞ as

giðCÞ ¼ a; if viðCÞ
 ki;
0; otherwise;

�
(2)

where a > 0 is a constant. The utility function of pi is
defined as

uiðCÞ ¼
�P

pj2Mi
gjðCÞ

�
� b; if ci ¼ 1;

0; otherwise;

(
(3)

where b is another constant such that 0 < b < a. Intui-
tively, a dominator pi earns a profit of a from each closed
neighbor of pi when pi’s domination is really needed by that
neighbor. What pi gains from being a dominator is the total
profit pi earns minus a fixed cost b. Since b < a, pi has the
incentive to become a dominator as long as at least one
closed neighbor of pi needs pi’s domination. Clearly, the
payoff of a player depends not only on its own choice, but
also the choices of all its neighbors and neighbors of
neighbors.

The dynamics of the game are quite complex even for
small problem instances. For the network topology shown
in Fig. 1, Fig. 2 shows all possible transitions of strategy
profiles starting from 00000 with the defined utility func-
tion. The possible transitions of strategy profiles are also

sensitive to the starting strategy profile. For example, transi-
tions of strategy profiles starting from 11111 (not shown
here) are different from those shown in Fig. 2. Starting from
00000, all transitions converge to five possible final results
(10010, 10001, 01010, 01101, and 00110) and all these results
are legitimate. Although these resulting sets are not of the
same sizes (four sets are of size two while the other is of size
three), these sets are all minimal. It is also not hard to verify
that the maximum number of transitions is four, less than
the number of nodes. Therefore, the self-stabilization, small
size, and time efficiency requirements are all met in this par-
ticular example. The following sections shall show whether
these requirements are universally met with the designed
utility function.

3.2 Proof of Self-Stabilization

The proposed approach corresponds to silent stabilizing
[26], meaning that stabilization in G correspond to quiescent
states. Therefore, the closure requirement for the proposed
approach to be self-stabilization is trivially met. The conver-
gence requirement corresponds to the following two
properties:

P1 Starting from any strategy profile, G eventually ends
up with a Nash equilibrium.

P2 Each Nash equilibrium in G is aK-dominating set.
We shall prove property P1 by showing that the pro-

posed multi-domination game is an exact potential game [27].

Definition 3 (Exact potential game). G ¼ ½P ; fSigni¼1; fuigni¼1�
is an exact potential game if it admits an exact potential
function pðci; C�iÞ such that

8pi 2 P : 8ci; c�i 2 Si; ci 6¼ c�i ::
uiðc�i ; C�iÞ � uiðci; C�iÞ ¼ pðc�i ; C�iÞ � pðci; C�iÞ:

(4)

This definition indicates that we need to find an exact
potential function to show that the proposed game is an
exact potential game. This is the most difficult part of our
analytic work. Note that a summation of all the player’s
payoffs fðCÞ ¼ P

i¼1::n uiðCÞ in the proposed game is not an
exact potential function.

Theorem 1. The proposed multi-domination game
G ¼ ½P ; fSigni¼1; fuigni¼1� is an exact potential game.

Proof. We prove the theorem by showing that the following
function is an exact potential function:

pðCÞ ¼
Xn
j¼1

XvjðCÞ

k¼0

hjðkÞ
0
@

1
A� b

Xn
j¼1

cj; (5)

where

hiðkÞ ¼ a; if 1
 k
 ki;
0; otherwise:

�

Detailed proof is presented in Appendix B, available in
the online supplemental material. tu
Since the strategy space of G is finite, G is a finite exact

potential game. It has been proved [27] that every finite

Fig. 2. Possible transitions of game states for the network topology of
Fig. 1 withK ¼ ð1; 1; 1; 1; 1Þ.

3204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

exact potential game possesses a Nash equilibrium. Intui-
tively, any transition of strategy profile caused by the myo-
pic behavior of a single player increases the value of the
exact potential function pð�Þ. Since the value of pð�Þ is upper
bounded (refer to Theorem 5), the game eventually stops.
Because we do not assume a particular initial configuration
in the proof, any initial configuration of the game eventually
leads to a Nash equilibrium.

Property P2 is not difficult to prove, as the following the-
orem shows.

Theorem 2. Every Nash equilibrium in G is aK-dominating set.

Proof. We shall prove that all Nash equilibria are
K-dominating sets by way of contradiction. Suppose that
there exists some Nash equilibrium C ¼ ðc1; c2; . . . ; cnÞ in
G that is not a K-dominating set. It follows that there
must be some pi in P for which viðCÞ < ki. Since
C0 ¼ ð1; 1; . . . ; 1Þ is a K-dominating set, this means
9pj 2 Mi : cj ¼ 0. For any such pj, changing cj from 0 to 1
can cause a payoff change from 0 to at least a� b > 0
(which comes from the new domination on pi). There-
fore, C cannot be a Nash equilibrium, which contradicts
with the assumption. tu

3.3 Set Size and Time Efficiency

We present two theorems to show that the proposed
approach finds rather small multi-dominating sets. The first
shows that all K-dominating sets found are minimal (Theo-
rem 3). The second shows that these results are Pareto opti-
mal (Theorem 4).

Theorem 3. Every Nash equilibrium in G is a minimal
K-dominating set.

Proof. Theorem 2 already shows that each Nash equilibrium
is a K-dominating set, so we need only prove that each
Nash equilibrium is also minimal. By way of contradic-
tion, suppose that C ¼ ðc1; c2; . . . ; cnÞ is a Nash equilib-
rium in G that contains some proper subset that is also a
K-dominating set. It follows that there exists some node
pi such that ci ¼ 1 and 8pj 2 Mi : vjðCÞ > kj. Therefore,
uiðCÞ ¼ �b and changing ci from 1 to 0 can cause a utility
gain of b. Clearly, C cannot be a Nash equilibrium. tu
Although a minimum K-dominating set must be mini-

mal as well, a minimal K-dominating set may not have the
smallest size. Pareto optima provide another way to exhibit
the quality of the game. With a Pareto optimum, we cannot
increase the utility of some player without sacrificing the
utility of any others. Since utility functions defined in the
proposed game capture effective contribution of dominators
(redundant domination does not count), Pareto optima indi-
cate good and desired results.

Theorem 4. Every Nash equilibrium in G is Pareto optimal.

Proof. First note that for any player pi, its payoff is either 0
(iff ci ¼ 0) or ma� b > 0 (iff ci ¼ 1), where
m ¼ 1; 2; . . . ; jMij. Suppose, by way of contradiction, that
C ¼ ðc1; c2; . . . ; cnÞ is a Nash equilibrium but not Pareto
optimal. This implies that there exists some strategy pro-
file C0 ¼ ðc01; c02; . . . ; c0nÞ such that 8i 2 f1; 2; . . . ; ng :
uiðC0Þ 	 uiðCÞ and 9i 2 f1; 2; . . . ; ng : uiðC0Þ > uiðCÞ.

Consider any player pi such that uiðC0Þ > uiðCÞ. Since
uiðCÞ 	 0, uiðC0Þ must be greater than 0 and hence c0i
must be 1. The condition uiðC0Þ > uiðCÞ and c0i ¼ 1
implies that there must exist some pj 2 Mi for which
gjðCÞ ¼ 0 and gjðC0Þ > 0. The condition gjðCÞ ¼ 0
implies vjðCÞ > kj while gjðC0Þ > 0 implies vjðC0Þ
 kj.
It follows that 9pk 2 Mj : ck ¼ 1 ^ c0k ¼ 0. Because C is a
Nash equilibrium, it is impossible that 8pl 2 Mk : glðCÞ ¼
0 (otherwise pk would rather choosing ck ¼ 0). Therefore,
ukðCÞ 	 a� b > 0 ¼ ukðC0Þ, which contradicts with our
assumption that 8i 2 f1; 2; . . . ; ng : uiðC0Þ 	 uiðCÞ. tu
It is possible to show that minimum K-dominating sets

are Pareto optimal by a proof similar to that given in
Theorem 4. However, the opposite does not hold generally.
As an example, all the five Nash equilibria shown in Fig. 2
are Pareto optimal. Four of the equilibria are also minimum
dominating sets but the other one, 01101, is not.

Theorem 5. The number of strategy profile transitions for G to
reach a Nash equilibrium starting from any strategy profile is
upper bounded by

a
Pn

j¼1 kj � bmaxnj¼1fkjg
minða� b;bÞ :

Proof. First note that the minimum value of pðCÞ is 0 (which
occurs when C ¼ ð0; 0; . . . ; 0Þ). For each pj, the maximal
value of

XvjðCÞ

k¼0

hjðkÞ

for any C is kja. Furthermore, the minimal value ofPn
j¼1 cj is maxnj¼1fkjg. Therefore, the maximal value of

pðCÞ is aPn
j¼1 kj � bmaxnj¼1fkjg. Now consider the mini-

mal increment of pðCÞ brought by any player pi’s strat-

egy change. If ðci; c�i Þ ¼ ð0; 1Þ, the value of pðC�Þ � pðCÞ
is at least a� b as indicated by (10). If ðci; c�i Þ ¼ ð1; 0Þ,
(13) indicates that the increment of pðCÞ is b. Therefore,

the maximal number of strategy changes for G to reach a

Nash equilibrium starting from any strategy profile is

ðaPn
j¼1 kj � b maxnj¼1fkjgÞ=minða� b;bÞ. tu

For MDS problem (i.e., ki ¼ 1 for all i), Theorem 5 indi-
cates that the maximal number of strategy changes is no
more than ðna� bÞ=minða� b;bÞ, which is 2n� 1 if a ¼ 2b.

The multi-domination game can be reshaped for the
k-dominating set problem. The concepts are similar, though.
We put all the details in Appendix C, available in the online
supplemental material, due to space limitation.

4 FROM GAME TO ALGORITHM

4.1 Challenges and Models

We must provide a feasible game-playing environment
for the realization of the game-theoretic design because
such an environment is not readily available in all distrib-
uted systems. This task faces several challenges. The first
is to provide an algorithm-execution framework for the
dynamic game model. The dynamic game model implic-
itly assumes that no two or more players make their

YEN AND CHEN: GAME-THEORETIC APPROACH TO SELF-STABILIZING DISTRIBUTED FORMATION OF MINIMAL... 3205

decisions simultaneously. This assumption can be
ensured with a central daemon. However, the proposed
game is a graphical game [28], [29], meaning that not
every player has conflicting interest with every others. In
fact, two player’s utilities are related only if they are
neighbors or have some common neighbor. Therefore, the
game design allows decision parallelism among some
players. Nevertheless, converting the game design into a
distributed algorithm that runs under a distributed or
synchronous daemon requires considerable efforts not
directly related to the game itself. This study assumes
central daemon to simplify the presentation of algorithms.

The second challenge concerns the availability of perfect
information in distributed systems. The assumption of per-
fect information in games states that whenever player pk
changes ck, every other player pi (every player pi for which
Mi \Mk 6¼ ; in our game) knows the latest value of ck
before pi makes a potential response. This assumption may
be reasonable in the message-passing inter-process commu-
nication model. For example, in a wireless ad hoc network,
wireless nodes (as players) can broadcast their decisions
with doubled transmission range to inform all neighbors of
their neighbors within a reasonably short time. This model
is similar to that discussed in [30]. However, most existing
self-stabilizing algorithms are expressed in the form of
guarded commands [16] that is grounded in the shared-var-
iable model. Guarded commands impose two types of
memory access constraints. The read constraint does not
allow processes to read variables that are not owned by
their closed neighbors. The write constraint does not allow
processes to write variables that are not owned by them.
Consequently, if pk 62 Mi, ck is not locally accessible to pi
(read constraint). One might argue that pi can learn of ck or
the effect of ck indirectly through some variable (say, x) that
is owned by a common neighbor of pi and pk. However, the
write constraint does not allow a consistent update of ck
and x at the same time. Consequently, players may not have
up-to-date information when they make decisions. This lim-
itation makes the proposed approach a game with imperfect
information and may invalidate the stability property of the
designed game.

4.2 Algorithm in Guarded Commands

We now present a distributed algorithm that realizes the
multi-domination game using guarded commands. This
algorithm runs under a central daemon and consists of five
rules (R1-R5) as shown below.

R1 jMi \ fpjjxðjÞ ¼ truegj < ki ^ gðiÞ 6¼ UNDER!
gðiÞ :¼ UNDER

R2 jMi \ fpjjxðjÞ ¼ truegj ¼ ki ^ gðiÞ 6¼ EQUAL!
gðiÞ :¼ EQUAL

R3 jMi \ fpjjxðjÞ ¼ truegj > ki ^ gðiÞ 6¼ OVER!
gðiÞ :¼ OVER

R4 9pj 2 Mi : gðjÞ ¼ UNDER ^ xðiÞ 6¼ true!
xðiÞ :¼ true

R5 8pj 2 Mi : gðjÞ ¼ OVER ^ xðiÞ 6¼ false!
xðiÞ :¼ false

Each guarded command specifies one rule that consists
of a condition part (a Boolean expression) followed by an
action part (statements). These two parts are separated by

‘!’. A guarded command is enabled if its condition part is
evaluated true. A process executes the action part of a com-
mand only when that command is enabled and the execu-
tion is scheduled by the daemon. When more than one
commands are enabled, the daemon schedules one of them
nondeterministically. Processes update their local states in
action parts. The execution of the action part is assumed
atomic, i.e., not interleaved with the execution of any other
guarded command.

In the algorithm, each process pi uses a local Boolean var-
iable xðiÞ to denote whether pi chooses to be in the dominat-
ing set. It uses another variable gðiÞ to deal with the read
constraint. The value of gðiÞ represents pi’s current knowl-
edge of the quantitative relationship between ki and the
number of pi’s closed neighbors that currently choose to be
dominators. More explicitly,

gðiÞ ¼
UNDER; if jMi \ fpjjxðjÞ ¼ truegj < ki;
EQUAL; if jMi \ fpjjxðjÞ ¼ truegj ¼ ki;
OVER; if jMi \ fpjjxðjÞ ¼ truegj > ki:

8<
: (6)

Each player pi decides xðiÞ based on the gðjÞ value of all its
closed neighbor pj. On the other hand, pj updates gðjÞ
according to the xðiÞ value of all its closed neighbors pi.
Because each rule updates only one local variable (either
xðiÞ or gðiÞ), and a central daemon schedules only one rule
at a time, the values of xðiÞ’s and gðiÞ’s are not simulta-
neously and consistently updated. The inconsistency
between local variables of the same process (for example,
xðiÞ ¼ true and gðiÞ ¼ UNDER for ki ¼ 1) can be prevented
by rewriting the algorithm to consistently update all local
variables in one command. However, inconsistencies
between variables of different processes (for example,
xðiÞ ¼ true and gðjÞ ¼ UNDER for some pj 2 Ni with
kj ¼ 1) are inherent due to the write constraint. Conse-
quently, this realization yields more states than the pro-
posed game and allows many state transitions that are not
possible in the proposed game. Note that the root cause of
the inconsistencies comes from the read constraint. If pi can
directly read xðkÞ for all Mk \Mi 6¼ ;, then all gðiÞ’s are not
needed and no extra states are introduced.

4.3 Stability and Other Properties

Although the proposed algorithm permits state transitions
that are not possible in the proposed game, we can still
prove weak stability [17] of the algorithm. Detailed proofs
are given in Appendix D, available in the online supplemen-
tal material.

The introduction of extra state-transition paths in the
algorithm may reduce the probability of the game being
trapped in an inferior solution due to fast convergence
of the game. Consider the example shown in Fig. 3. Sup-
pose that K ¼ ð1; 1; . . . ; 1Þ and nodes p1, p4, p5, and p7
have chosen to be dominators at some state of the game.
In the proposed game, this configuration is a Nash equi-
librium with a dominating set of size four. In the
weakly-stabilizing algorithm, this configuration can fur-
ther transit to another solution. In the example shown in
Fig. 4, a possible state-transition path leads the system
into a solution with only three dominators. Of course, it
is also possible that the algorithm runs into an inferior

3206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

solution. We conducted simulations to study this possi-
bility. The results are presented in the next section.

5 SIMULATION RESULTS

We conducted simulations to study the performance of the
proposed game-theoretic approach and compare it with
those of existing methods. Since all approaches produced
correct results, we were primarily concerned with the sizes
of the dominating sets these methods generated. As the
results heavily depend on network topology, we considered
four representative types of network topologies in the simu-
lations. These topologies are

� Unit disk graph [18], which has been used to model
network topologies of wireless ad hoc networks. In a
UDG, two wireless nodes are neighbors only when
they are within the transmission range of each other.
In our simulations, n wireless nodes were randomly
deployed in a 1; 000� 1; 000 m2 area. Each node has
a default transmission range of 200m.

� Random graph, which was introduced by Erd€os and
R�enyi [19] (known as the Erd€os-R�enyi model) has
been well studied for decades. In a random graph,
whether an edge exists between two nodes is an
independent event with probability pe.

� The Watts-Strogatz model [20], which creates a
small-world network that attempts to explain net-
work dynamics such as six degrees of separation in a
social network. In this model, each node has nk links
connecting to its nk nearest neighbors, but each link
has a probability pr to be rewired to a randomly cho-
sen node.

� The Barab�asi-Albert model [21], which generates a
scale-free network that exhibits a power-law distri-
bution of node degrees. In this model, a network
starts with a small number (m0) of connected nodes.
At every time step we add a new node x with m
(m
 m0) edges. The probability of x being con-
nected to a particular existing node y is proportional
to the degree of y.

5.1 Single Domination

We considered several self-stabilizing distributed algo-
rithms that find minimal dominating sets. These algorithms
were respectively proposed by Hedetniemi et al. [8], Xu
et al. [9], Kakugawa and Masuzawa [10], Turau [11], and
Goddard et al. [12]. We also tested the k-dominating set
algorithm proposed by Kamei and Kakugawa [14] by set-
ting k to 1. The proposed k-domination game and (hereafter
denoted by Game) and the associated weakly-stabilizing
algorithm (hereafter denoted by WSA), were also tested.

Fig. 5 shows average sizes of dominating sets generated by
each method in various types of topologies. Each average
was obtained over 1; 000 runs.

Note that different algorithms might run under different
types of daemons. Besides, Game demands perfect informa-
tion while WSA achieves weak stabilization. Therefore, the
results here were not obtained on a fair basis and should
not be overstretched.

All classical self-stabilizing single-domination algorithms
[8], [9], [10], [11], [12] performed nearly the same under all
settings. These algorithms all generated more dominators
than the k-dominating set algorithm proposed by Kamei
and Kakugawa [14]. Kamei’s algorithm is next to the pro-
posed game-theoretic approaches (both Game and WSA).
WSA outperformed Game in all settings (including those
presented in the following). This confirms our conjecture
that WSA is more immune to local optimal solutions than
Game. The superiority of WSA over Game in the size of
dominating set, however, comes at the cost of increased
state transitions. Fig. 6 compares the average number of
decisions made by a player between Game and WSA. The
values of Game were all below 1:0 regardless of network
topology. The values of WSA were all higher than those of
Game, particularly in random graphs. This indicates the
cost of WSA in identifying smaller dominating sets.

The above results were obtained by running each algo-
rithm from scratch. That is, all nodes were dominatees
initially and all variables were set to their default values
at the beginning. Since all the algorithms are self-stabiliz-
ing, they can start from arbitrary states. We therefore
repeated all the simulations but assigned randomly gen-
erated values to variables (nodes were randomly assigned
the roles of dominators or dominatees and pointers were
pointed to null or an arbitrary neighbor with equal proba-
bility). Table 2 lists the increases of the sizes of dominator
sets in the new results relative to those in the old results
in all settings. Almost all algorithms show little increases,

Fig. 3. A Nash equilibrium where nodes p1, p4, p5, and p7 have chosen to
be dominators (K ¼ ð1; 1; . . . ; 1Þ).

Fig. 4. A computation that changes the set of dominators
(K ¼ ð1; 1; . . . ; 1Þ).

YEN AND CHEN: GAME-THEORETIC APPROACH TO SELF-STABILIZING DISTRIBUTED FORMATION OF MINIMAL... 3207

Fig. 5. Average sizes of one-dominating sets in various types of topologies

Fig. 6. Average number of decisions per player when generating one-dominating sets in various types of topologies.

3208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

indicating that these algorithms are not sensitive to initial
conditions. The only exception is the algorithm proposed
by Hedetniemi et al. [8], for which the increment can be
up to �32:6% in the BA model. The algorithm by Kamei
and Kakugawa [14] also show a significant difference in
the BA model (�6:1%). The results indicate that the per-
formance of these two algorithms is not independent of
their initial states.

5.2 k-Domination

For k-dominating set problem, we have compared the
proposed approaches with the algorithm proposed by
Kamei and Kakugawa [14]. Fig. 8 in Appendix E, avail-
able in the online supplemental material, shows the
results for two-dominating sets. Here the two algorithms
proposed by Huang et al. [31], [32] are also considered.
The results indicate that Huang’s algorithm for central
daemon [32] found more dominators than his algorithm
for distributed daemon [31]. Kamei’s algorithm per-
formed better than Huang’s algorithms but generally
worse than the proposed approaches. The only exception
is in the WS model, where Kamei’s algorithm produced
fewer dominators than Game when link rewiring proba-
bility pr was less than 0:4. The superiority of WSA over
Game is still observed in these results. We also tested
these algorithms with random initial states. The result
(Table 3) indicates that the performance of all algorithms
(excepting the one by Kamei et al. in the BA model) is
independent of initial states.

Fig. 9 (Appendix E, available in the online supplemental
material) compares Kamei’s algorithm and the proposed
approaches with k varied from 1 to 5. The result still shows
the outperformance of WSA with a trend that Kamei’s algo-
rithm approaches the proposed ones with a large k.

5.3 Multi-Domination

We ran the proposed approaches to find multi-dominat-
ing sets in various network topologies. The domination
requirement of each node pi was varied by setting ki to
be a random integer within the range ½1; Kmax�. Fig. 10 in
Appendix E, available in the online supplemental mate-
rial, shows the average size of multi-dominating set with
respect to the value of Kmax. As expected, the size of
multi-dominating set increases with Kmax. The perfor-
mance gap between Game and WSA increases with Kmax

in the WS model, while the gap remains unchanged or
diminishes in other topologies.

6 CONCLUSIONS

We have proposed a game-theoretic approach to self-stabi-
lizing algorithm that identifies multi-dominating sets in
distributed systems. The utility function of each player
(node) has been designed to guarantee that the proposed
approach always ends up with a state of Nash equilibrium
regardless of its initial states, any Nash equilibrium corre-
sponds to a minimal multi-dominating set that is Pareto
optimal, and the number of state transitions is bounded.
However, game information is not fully available to dis-
tributed algorithms due to memory access constraints. A
distributed algorithm that does not rely on the assumption
of perfect information has been proposed and analyzed.
This algorithm is proved weakly stabilizing and can hope-
fully prevent the game from being trapped in inferior
results. Extended simulations were done, which consid-
ered four representative network topologies: UDG, the ER
model, the WS model, and the BA model. The results show
that the proposed approaches outperform existing algo-
rithms in identifying smaller dominating sets, k-dominat-
ing sets, and multi-dominating sets. The algorithm finds
smaller sets than the game at the cost of increased state
transition times. In short, this paper has demonstrated the
feasibility and efficiency of applying game theory to the
design of self-stabilizing algorithms.

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[2] S. Kutten and D. Peleg, “Fast Distributed Construction of Small
k-Dominating Sets and Applications,” J. Algorithms, vol. 28, no. 1,
pp. 40-66, July 1998.

[3] J.F. Fink and M.S. Jacobson, “n-Domination in Graphs,” Graph
Theory with Applications to Algorithms and Computer Science.
pp. 283-300, John Wiley & Sons, 1985.

[4] J.F. Fink and M.S. Jacobson, “On n-Domination, n-Dependence
and Forbidden Subgraphs,” Graph Theory with Applications to
Algorithms and Computer Science. pp. 301-311, John Wiley &
Sons, 1985.

[5] F. Harary and T.W. Haynes, “Double Domination in Graphs,” Ars
Combinatoria, vol. 55, pp. 201-213, Apr. 2000.

[6] L. Jia, R. Rajaraman, and T. Suel, “An Efficient Distributed Algo-
rithm for Constructing Small Dominating Sets,” Distributed Com-
puting, vol. 15, no. 4, pp. 193-205, 2002.

[7] E.W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed
Control,” Comm. ACM, vol. 17, no. 11, pp. 643-644, Nov. 1974.

[8] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani,
“Self-Stabilizing Algorithms for Minimal Dominating Sets and
Maximal Independent Sets,” Computers & Math. with Applications,
vol. 46, nos. 5/6, pp. 805-811, Sept. 2003.

[9] Z. Xu, S.T. Hedetniemi, W. Goddard, and P.K. Srimani, “A Syn-
chronous Self-Stabilizing Minimal Domination Protocol in an
Arbitrary Network Graph,” Proc. Fifth Int’l Workshop Distributed
Computing, pp. 26-32, 2003.

[10] H. Kakugawa and T. Masuzawa, “A Self-Stabilizing Minimal
Dominating Set Algorithm with Safe Convergence,” Proc. 20th
Int’l Parallel and Distributed Processing Symp., Apr. 2006.

TABLE 2
Relative Increases of the Sizes of Dominator Sets

with Random Initial States

TABLE 3
Relative Increases of the Sizes of Two-Dominator Sets

with Random Initial States

YEN AND CHEN: GAME-THEORETIC APPROACH TO SELF-STABILIZING DISTRIBUTED FORMATION OF MINIMAL... 3209

[11] V. Turau, “Linear Self-Stabilizing Algorithms for the Independent
and Dominating Set Problems Using an Unfair Distributed Sched-
uler,” Information Processing Letters, vol. 103, no. 3, pp. 88-93, 2007.

[12] W. Goddard, S.T. Hededtniemi, D.P. Jacobs, P.K. Srimani, and Z.
Xu, “Self-Stabilizing Graph Protocols,” Parallel Processing Letters,
vol. 18, no. 1, pp. 189-199, 2008.

[13] S. Kamei and H. Kakugawa, “A Self-Stabilizing Algorithm for the
Distributed Minimal k-Redundant Dominating Set Problem in
Tree Network,” Proc. Fourth Int’l Conf. Parallel and Distributed Com-
puting, Applications and Technologies, Aug. 2003.

[14] S. Kamei and H. Kakugawa, “A Self-Stabilizing Approximation
Algorithm for the Distributed Minimum k-Domination,” IEICE
Trans. Fundamentals of Electronics, Comm. and Computer Sciences,
vol. E88-A, no. 5, pp. 1109-1116, 2005.

[15] N. Guellati and H. Kheddouci, “A Survey on Self-Stabilizing
Algorithms for Independence, Domination, Coloring, and Match-
ing in Graphs,” J. Parallel Distributed Computing, vol. 70, pp. 406-
415, 2010.

[16] E.W. Dijkstra, “Guarded Commands, Nondeterminacy, and For-
mal Derivation of Programs,” Comm. ACM, vol. 18, no. 8, pp. 453-
457, Aug. 1975.

[17] M.G. Gouda, “The Theory of Weak Stabilization,” Lecture Notes in
Computer Science, A. Datta and T. Herman, eds., pp. 114-123,
Springer-Verlag, 2001.

[18] M.L. Huson and A. Sen, “Broadcast Scheduling Algorithms for
Radio Networks,” Proc. IEEE Military Comm. Conf. (MILCOM),
pp. 647-651, Nov. 1995.

[19] P. Erd€os and A. R�enyi, “On Random Graphs I,” Publicationes
Mathematicae, Debrecen, vol. 6, pp. 290-297, 1959.

[20] D.J. Watts and S.H. Strogatz, “Collective Dynamics of ‘Small-
World’ Networks,”Nature, vol. 393, pp. 440-442, June 1998.

[21] A.L. Barab�asi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, pp. 509-512, Oct. 1999.

[22] N.A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[23] A.D. Kshemkalyani and M. Singhal, Distributed Computing: Princi-

ples, Algorithms, and Systems, p. 634, Cambridge Univ. Press, 2008.
[24] J. Cohen, A. Dasgupta, S. Ghosh, and S. Tixeuil, “An Exercise in

Selfish Stabilization,” ACM Trans. Autonomous and Adaptive Sys-
tems, vol. 3, no. 4, article 15, Nov. 2008.

[25] L.H. Yen, C.M. Lin, and V.C.M. Leung, “Distributed Lifetime-
Maximized Target Coverage Game,” ACM Trans. Sensor Networks,
vol. 9, no. 4, article 46, July 2013.

[26] S. Dolev, M.G. Gouda, and M. Schneider, “Memory Requirements
for Silent Stabilization,” Acta Informatica, vol. 36, pp. 447-462, 1999.

[27] D. Monderer and L.S. Shapley, “Potential Games,” Games and Eco-
nomic Behavior, vol. 14, pp. 124-143, 1996.

[28] M.J. Kearns, M.L. Littman, and S.P. Singh, “Graphical Models for
Game Theory,” Proc. 17th Conf. Uncertainty in Artificial Intelligence,
2001.

[29] D.K.D. Vickrey, “Multi-Agent Algorithm for Solving Graphical
Games,” Proc. Nat’l Conf. Artificial Intelligence (AAAI ’02), 2002.

[30] T. Herman, “Models of Self-Stabilization and Sensor Networks,”
Proc. Fifth Int’l Workshop Distributed Computing, pp. 205-214, 2003.

[31] T.C. Huang, J.C. Lin, C.Y. Chen, and C.P. Wang, “A Self-
Stabilizing Algorithm for Finding a Minimal 2-Dominating
Set Assuming the Distributed Demon Model,” Computers &
Math. with Applications, vol. 54, no. 3, pp. 350-356, 2007.

[32] T.C. Huang, C.Y. Chen, and C.P. Wang, “A Linear-Time Self-Sta-
bilizing Algorithm for the Minimal 2-Dominating Set Problem in
General Networks,” J. Information Science and Eng., vol. 24, no. 1,
pp. 175-187, 2008.

[33] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, “Total Domina-
tion in Graphs,” Networks, vol. 10, no. 3, pp. 211-219, 1980.

[34] W. Goddard, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani, “A
Self-Stabilizing Distributed Algorithm for Minimal Total Domina-
tion in an Arbitrary System Graph,” Proc. 17th Int’l Parallel and
Distributed Processing Symp., Apr. 2003.

Li-Hsing Yen received the BS, MS, and PhD
degrees in computer science from the National
Chiao Tung University, Taiwan, in 1989, 1991,
and 1997, respectively. He was with the Depart-
ment of Computer Science and Information Engi-
neering at Chung Hua University, Taiwan, from
1998 to 2006. He has been with the Department
of Computer Science and Information Engineer-
ing, National University of Kaohsiung, Taiwan,
since 2006, and is currently a full professor. He
has served on the editor boards of Springer’s

Wireless Networks and Hindawi’s International Journal of Distributed
Sensor Networks. His research interests include mobile computing, wire-
less networking, and distributed algorithms. He has received the IEEE
WCNC 2013 Best Paper Award. He is member of the IEEE.

Zong-Long Chen received the BS degree from
the National Pingtung University of Education,
Taiwan, in 2011, and the MS degree from the
University of Kaohsiung, Taiwan, in 2013, both in
computer science. His research interests include
distributed algorithms and game theory.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

