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A Game-Theoretic Study of CSMA/CA
Under a Backoff Attack

Jerzy Konorski

Abstract—CSMA/CA, the contention mechanism of the IEEE
802.11 DCF medium access protocol, has recently been found vul-
nerable to selfish backoff attacks consisting in nonstandard config-
uration of the constituent backoff scheme. Such attacks can greatly
increase a selfish station’s bandwidth share at the expense of honest
stations applying a standard configuration. The paper investigates
the distribution of bandwidth among anonymous network stations,
some of which are selfish. A station’s obtained bandwidth share
is regarded as a payoff in a noncooperative CSMA/CA game. Re-
gardless of the IEEE 802.11 parameter setting, the payoff function
is found similar to a multiplayer Prisoners’ Dilemma; moreover,
the number (though not the identities) of selfish stations can be in-
ferred by observation of successful transmission attempts. Further,
a repeated CSMA/CA game is defined, where a station can toggle
between standard and nonstandard backoff configurations with a
view of maximizing a long-term utility. It is argued that a desirable
station strategy should yield a fair, Pareto efficient, and subgame
perfect Nash equilibrium. One such strategy, called CRISP, is de-
scribed and evaluated.

Index Terms—Ad hoc LAN, game theory, MAC protocol, selfish
behavior.

I. INTRODUCTION

I N A MOBILE ad hoc network (MANET), both user- and
network-end functions are comprised in a mobile station,

whose identity need not be known to other stations, and whose
actions cannot be mandated by any other party. However, most
MAC, routing and transport protocols have been designed with
a fully cooperative user in mind, therefore offer little protec-
tion against noncooperative users. These circumstances create
incentives for MANET stations to misbehave, i.e., depart from
standard protocols, while guaranteeing them freedom from pun-
ishment. User misbehavior can be selfish (targeting an unfairly
large share of network resources) or malicious (aimed at dis-
rupting network operation, such as a denial-of-service attack).
Orthogonally, one classifies misbehavior according to the af-
fected layer of network architecture [12], [24].

This paper focuses on selfish MAC-layer misbehavior in
a single MANET cell, an ad hoc wireless LAN (WLAN),
employing the IEEE 802.11 DCF medium access protocol [13].

Manuscript received June 4, 2004; revised April 7, 2005, and September
21, 2005; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A.
Orda. This work was supported in part by the U.S. Air Force Office of Scientific
Research under Grant FA8655-04-1-3074 and in part by the Ministry of Educa-
tion and Science, Poland, under Grant 1599/T11/2005/29.

The author is with the Department of Information Systems, Faculty of ETI,
Gdansk University of Technology, ul.Narutowicza 11/12, 80-952 Gdansk,
Poland (e-mail: jekon@eti.pg.gda.pl).

Digital Object Identifier 10.1109/TNET.2006.886298

The key contention mechanism, CSMA/CA, features a dis-
tributed backoff scheme for collision avoidance and resolution.
Selfish attacks against CSMA/CA aim at obtaining an unfairly
large bandwidth share and can be launched by tampering with
the network interface card (NIC) or by modifying NIC driver
software. For example, a station may draw successive backoff
durations from a different range than the standard prescribes.
Such a backoff attack induces long-term unfairness on top of
short-term one inherent in contention MAC protocols [16]; it is
difficult to prevent, physically or administratively, as the local
backoff scheme is entirely under a station’s control. A possible
approach is to provide disincentives to potential attackers. We
view the stations’ obtained bandwidth shares as payoffs in
a noncooperative CSMA/CA game and let a station act as a
player maximizing its payoff. The likely outcome is a Nash
equilibrium (NE) [10], from which no player has an incentive
to deviate. We analyze a one-shot and repeated CSMA/CA
game, and propose a station strategy that makes backoff attacks
by other stations ultimately yield lower payoffs.

Numerous studies of network protocols have taken an incen-
tive-oriented game-theoretic approach, e.g., [1], [8], [19], [25],
[30], [31]. It is especially fruitful in ad hoc networks, which lack
central administration and serve anonymous (i.e., unaccount-
able) stations. Here, most studies have been devoted to eliciting
cooperation in packet forwarding, e.g., [5], [23], [24], [34], [36].
Earlier work on MAC-layer misbehavior includes analyses of
S-ALOHA [21], [22] and random token protocols [17], discus-
sion of vulnerabilities of IEEE 802.11’s physical and virtual car-
rier-sense mechanisms [4], and proposals of punishment- and
reputation-based measures [20]. For hot-spot WLANs, [28] de-
scribes a trusted agent for statistical detection of misbehavior
given genuine station identities. Close to our model is a recent
game-theoretic study [7], which demonstrates how to enforce a
Pareto efficient NE by means of a distributed penalization mech-
anism (cf. also [26]). Its implementation again requires gen-
uine station identities, hard to come by in ad hoc networks, and
on-the-fly jamming of selected frames sensed on the medium,
a significant departure from the MAC standard. We believe that
with anonymous stations and no trusted party, defense against
selfish MAC-layer misbehavior is not possible with an IEEE
802.11 NIC applied “as is.” However, we want to keep the MAC
protocol intact.

The rest of this paper is organized as follows. Section II
contains a brief reminder of the CSMA/CA contention mecha-
nism, extends a well-known approximate model of an ad hoc
CSMA/CA WLAN under saturation load, and discusses its
solution under a backoff attack. In Section III, we describe a
one-shot CSMA/CA game. Next, in Section IV we describe a
repeated CSMA/CA game and argue that a fair, Pareto efficient,
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TABLE I
SUMMARY OF MAIN NOTATION

and subgame perfect NE [10] should be sought. In Section V,
we analyze a strategy called CRISP that yields such a NE and
thereby ensures asymptotically fair and efficient bandwidth
use. Section VI concludes the paper and outlines directions
for further research. Table I summarizes the notation used
throughout the paper.

II. CSMA/CA PERFORMANCE AT SATURATION

In this section, we outline the network operation and calculate
a station’s obtained bandwidth share using Bianchi’s Markovian
model. Next we extend the model to capture some general prop-
erties of CSMA/CA under backoff attack.

A. CSMA/CA Contention Under IEEE 802.11 DCF

A station waits until the medium has been idle for a prede-
fined DIFS period and then sets the local backoff counter to a
random integer from , where is the current con-
tention window. Initially, is set to a minimum value .
The backoff counter is decremented each time the medium is
sensed idle for a predefined slot period, the countdown being
frozen whenever the medium is sensed busy and resumed after
it is sensed idle for another DIFS period. If basic access method
is used, a DATA frame is transmitted when the backoff counter
expires. If successful, it is replied to by a recipient’s ACK
frame and is reset to . Otherwise, i.e., if multiple
DATA frames collide, each of their senders infers a collision
(as no ACK follows), doubles , sets the backoff counter to
a random integer from , and starts another countdown.
The doubling of stops at a maximum value ; further
consecutive collisions beyond a retry limit cause a transmission
abort (we neglect this feature in our analysis, cf. [27], [37]). A
SIFS period, shorter than DIFS, is defined to guarantee unin-
terrupted DATA ACK exchange. In RTS/CTS access method,
a station whose backoff counter has reached zero transmits an
RTS frame; if successful, it is replied to by a recipient’s CTS
frame and a DATA frame transmission follows. If multiple RTS
frames collide, their senders infer a collision (as no CTS frame
follows) and behave similarly as above. A SIFS period guaran-
tees uninterrupted RTS CTS DATA ACK exchange.

Let be the maximum number of consecutive collisions upon
which is doubled, i.e., ; the pair

will be called the backoff configuration (or configura-
tion for short) at a station. E.g., , , and
are configurations recommended for FHSS- or OFDM-based,
DSSS-based, and infrared-based PHY layers, respectively.

B. Stochastic Performance Model

Consider an ad hoc, single-hop WLAN with stations
using the IEEE 802.11 DCF protocol in the MAC layer. The
single-hop assumption aims to factor out hidden stations and is-
sues related to frame forwarding. It does not rule out RTS/CTS
access, provided that DATA frames are long enough. Further
assume that the network operates under saturation load, i.e.,
upon a successful transmission of a DATA frame, a station is
immediately ready to transmit another one. The stations can
be thought of as engaged in large file transfers or transmission
of CBR traffic. Note that selfish behavior is pointless under
light or moderate load, where each station mostly gets all the
bandwidth it requires. To set the stage for backoff attacks, we
allow a transmitting station to remain anonymous to nonre-
cipients, its location obscured by mobility and inaccuracy of
tracking devices, and its logical identity obscured by a fictitious
MAC address.

As no exact model of a saturated CSMA/CA network ex-
ists, Bianchi’s approximate model [6] serves as a first-order
approach (for applications and refinements, see, e.g., [7],
[27], [37], [39]). At the core lies an “independence hypoth-
esis”: a station with is represented by a
Markov chain, assuming a constant collision probability
(i.e., the probability of another station’s transmission attempt
in a slot). According to [6], the steady-state probability of
the station attempting a frame transmission in a slot is then

. Backoff
freezing can be accounted for similarly as in [39], yielding

(1)

The thus expressed as a function of reflects back upon via
the “independence hypothesis,” which leads to

, a nonlinear equation in .
Suppose now that each station configures its backoff

scheme individually with . Though feasible
configurations are only constrained by and ,
we assume throughout this section that (
will be discussed separately). Station is “more selfish” than
station if and , at least one
of the inequalities being strict. The relevant probabilities at
station , and , are bound by a relationship analogous to
(1). To facilitate calculation note that by the “independence
hypothesis,” the probability of at least one station attempting a
frame transmission in the present slot is

(2)

Since , we have

(3)
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Substituting (3) into (1) yields for

(4)

C. Bandwidth Shares

The and solving the nonlinear equations (2) through (4)
determine station ’s bandwidth share:

(5)

where is station ’s success probability
(probability of a successful frame transmission in a nonempty
slot), is the total success probability, is a
specified time or frame transmission duration, and SIFS
CTS SIFS DATA SIFS ACK. For basic access, substitute
DATA for RTS and take SIFS ACK. Note that in existing
IEEE 802.11 settings, and

.
Let be a network-wide backoff configu-

ration profile. If multistability of CSMA/CA (and unwelcome
short-term unfairness it implies [27]) is to be avoided then
(2)–(4) should have a unique solution ( , ).
A sufficient condition for this, as well as partial characterization
of the solution, is given in the following proposition whose full
proof appears in [18].

Proposition 1: Let be a station with the smallest
among all the stations and the smallest among the stations
with the smallest ; let . If

(6)

where is the indicator function, then the following holds:
(i) The solution ( , ) exists and is unique.

(ii) Let , ,
and . Then for
the resulting bandwidth shares, .

Sketch of proof: Tedious calculation shows that if (6) holds
then for each of the equations (4)
has a unique root in , while for some
of them have none; moreover, the corresponding is
continuous and nonincreasing in . Thus, (2) becomes

, where is also
continuous and nonincreasing in . By inspection,

if , therefore . Hence, the root
of (2) fulfills , inducing a unique

. This yields part (i). For part (ii), write

(7)
where , , and are positive constants determined from
(5), and is station ’s success probability under con-
figuration profile . Careful analysis of (3) and (4) shows that

, , and for
. Thus, the fraction in (7) decreases when is replaced

by .

Condition (6) excludes only configuration profiles with
and , e.g., the presence of a station with

is not allowed unless there is another station
with . Fortunately, even with the threat of

multistability put aside, such anomalous profiles do not present
practical backoff attack scenarios: apparently, configuring as
selfishly as station is determined to grab as large
a bandwidth share as possible and would not want to diminish
it by configuring i.e., agreeing to double upon
collisions. Part (ii) addresses incentives: since configuring self-
ishly trades increased collision rate for increased transmission
opportunity, it would seem that the net effect depends on the
configuration at the other stations; yet a backoff attack incentive
turns out to be always present.

III. CSMA/CA GAME

When selecting so as to maximize ,
station has no prior knowledge of the other stations’ selec-
tions; yet depends on them, as well as on . An -player
game thus arises in which bandwidth shares are viewed as
players’ payoffs. It is reasonable to assume that the game is
noncooperative in that no binding agreements can be reached
between the players as to their future play.

A. Game-Theoretic Framework

We begin with a few game-theoretic definitions [10], re-
taining the previous notation and terminology.

Definition 1: A game is a triple , where
is the set of players (stations), is the set of fea-

sible actions (backoff configurations), and : is
a payoff function. Each station selects a backoff configu-
ration and subsequently receives a payoff (band-
width share) dependent on the configuration profile

.
Definition 2: A configuration is dominant for

station if
for all

with . It is
strictly dominant if all the inequalities are strict.

Definition 3: A Nash equilibrium (NE) is a configu-
ration profile at which

for all
and with . A NE is strict if all these inequali-
ties are strict.

At a NE, each station selects a best reply to the other stations’
selected configurations, a likely outcome if all the players are ra-
tional (i.e., only interested in maximizing own payoffs) and their
rationality is common knowledge [10], [14]. If a configuration

is strictly dominant for each station then the configuration
profile (denoted all- ) is a unique and strict NE. If
it is nonstrictly dominant, the NE need not be unique or strict.

Definition 4: A configuration profile is Pareto in-
ferior to another configuration profile , if

with at least one strict inequality.
It is Pareto efficient if it is not Pareto inferior to any other con-
figuration profile, and fair if .

From a global performance viewpoint, a fair and Pareto effi-
cient configuration profile is a desirable outcome as a form of



1170 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

“cooperative equilibrium.” Unfortunately, it does not need to co-
incide with a NE.

B. Greedy, Selfish, and Honest Configurations

Let
and let be a configuration prescribed by the
IEEE 802.11 standard. A station is said to play honest if it
sticks to , and greedy if it selects ; the latter
configuration, so far excluded from considerations, has the
backoff scheme disengaged (as permitted by some existing
NIC driver software). Selecting or any other configura-
tion in the presence of another station playing greedy yields
a zero payoff; however, selecting with no other station
playing greedy yields a 100% success probability and the
highest possible payoff, further denoted [for RTS/CTS
access, , whereas for basic
access, , cf. the notation
following (5)]. Therefore, is nonstrictly dominant for each
station. Any configuration profile with at least one station
selecting is a nonstrict NE.

Given that each of these Nash equilibria is either Pareto ineffi-
cient or unfair, and that most of them yield zero payoffs, one may
ask whether there are other configurations the players might be
interested in selecting. Consider a restricted game with the con-
straint , i.e., no station plays greedy. The payoffs can
now be calculated as in Section II, provided that (6) holds. A
station selecting is said to play selfish. By part (ii)
of Proposition 1, is strictly dominant for each station, so that
the configuration profile all- is a unique and strict NE. Un-
like , can be selected without fear that any other station
responding in kind will reduce the received payoff to zero: as
demonstrated below, two or more stations playing selfish can
still count on nonzero payoffs. We conclude that each station
has reasons to either play greedy or selfish (if it has the desire
and ability to self-configure the backoff scheme), or honest (if it
has no such desire or ability). In the former case it plays greedy
when no station is expected to respond in kind, and selfish oth-
erwise.

Definition 5: A CSMA/CA game conforms to Definition 1
with .

To further characterize the restricted CSMA/CA game,
consider a practical scenario where out of the stations
play selfish, whereas the other play honest. Hence,
the desirable outcome is all- . Let and be
an honest and selfish station’s bandwidth share, respectively,
with an analogous notation , , and .
The and are only configuration dependent
and can be obtained from (2)through (4). Table II lists sample
values for , 10, 15, and 20 along with the total success
probability ,
assuming . These values uniquely determine

since in the equation defining , both and
are nonincreasing in [18], hence the right-hand side is mo-
notonously decreasing in .

Turning to bandwidth shares, we find that
for any existing IEEE 802.11 setting. Indeed, from (5)

a sufficient condition for this is

TABLE II
SUCCESS PROBABILITIES WITH w = h2; 0i AND w = h16; 6i

(8)

where for basic access and
for RTS/CTS access. With

and , the right-hand side of (8) remains below five,
whereas ranges from over six (in a 54 Mb/s IEEE 802.11a
setting with RTS/CTS access, where ) to over 200 (in
a 1-Mb/s IEEE 802.11 setting with basic access and 1500-byte
DATA frames, where ). With or
the conclusion remains the same. Hence, the unique NE all-
is Pareto inferior to all- , the only fair and Pareto-efficient
configuration profile. This creates exactly the same conflict as
does the well-known Prisoners’ Dilemma [10], [21]: self-in-
terest dictates that each station select , yet all the stations
would be better off selecting . Calculating similarly as above
we find that and decrease in and in
existing IEEE 802.11 settings, which fits in with the definition
of a multiplayer Prisoners’ Dilemma [38].1

A look at Table II reveals two IEEE 802.11 setting indepen-
dent properties of the restricted game, collectively referred to as
coarse profile observability. First, varies visibly with

, but little with . One can define a threshold such that for
all , , and , the relative difference between
and is significant; e.g., if 10% difference is con-
sidered significant then . Second, if is not too large
(e.g., not exceeding 20, a reasonable WLAN size) then
is distinctly positive, while for .

Coarse profile observability brings valuable information into
the game: even though station cannot guess the other stations’
configurations, it can infer with a certain granularity. If it plays
selfish, observation of permits to distinguish

, and . If it plays honest, a similar distinction follows

1Note that the nonrestricted CSMA/CA games also bears some resemblance
to a multiplayer Prisoner’s Dilemma in that the only fair NE is Pareto inefficient.
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from the observed total success probability , whereas obser-
vation of enables the distinction between and .
(Even with anonymous stations, a long uninterrupted transmis-
sion followed by a short one after a SIFS period reveals a suc-
cessful DATA ACK exchange, so that obtains as the propor-
tion of nonempty slots with successful transmission attempts.)

In the presence of greedy play, cannot be observed. How-
ever, letting and observing , a station
can distinguish , , and as indicated by

, , and , respectively. We
summarize the properties of the CSMA/CA game as follows:

• any configuration profile with is a nonstrict NE,
either unfair or Pareto inefficient;

• coarse profile observability permits each station to distin-
guish , , and , and if , to distinguish

, and ;
• in existing IEEE 802.11 settings, the restricted CSMA/CA

game is a multiplayer Prisoners’ Dilemma.

IV. REPEATED CSMA/CA GAME

Although the Nash equilibria of the CSMA/CA game are
either unfair or Pareto inefficient, game theory promises a more
satisfactory outcome for a related repeated game. Let our game
proceed in stages of fixed length. A stage should last long
enough to approach the steady state values (5); simulations
similar to those in Section V-C show that this happens after
a few hundred to a few thousand CSMA/CA contentions.
For each stage , station selects a configuration

, which it maintains throughout the
stage.2 Thus, is the configuration profile
in stage and is the play path up to stage .
An observable play path only contains those characteris-
tics of configuration profiles that are public knowledge, as
they can be inferred via coarse profile observability. That is,

, where for convenience we adopt the
following notation, letting :

if and ,
if and ,
if ,
if .

(9)

Similarly as in [10], [14] we define a strategy as a function
: that specifies the probability distribution of se-

lected given an observed play path up to stage , where
is the set of all observable play paths of finite length and

is the set of all probability distributions over . The obtained
stage payoffs are

if and ,
if and ,
if and ,
if or and .

(10)

2Throughout the paper, superscripts count time periods; for power exponents
we use the notation (a) .

where was defined in Section III-B. Any initial play path
determines past stage payoffs through (10) and, jointly

with the strategy profile , induces a probability
distribution of future stage payoffs. If all stage payoffs are
equally weighted (there is no discounting of future payoffs), sta-
tion ’s long-term satisfaction, or utility, can be quantified by
the following liminf-type asymptotic [15]:

(11)
where . Since the are bounded, so
are their expectations, hence the limit exists and lower bounds
the long-term per stage payoff average. Note that the inferior
operator can be dropped if the converge in probability to a
constant as increases.

Ideally, each station plays a strategy that, from any stage on-
wards, is the best reply to the other stations’ strategies in the
sense of (11) regardless of the play path so far, and the resulting
stage payoffs asymptote to , i.e., ultimately all- per-
sists. This is captured by the notions of fairness, Pareto effi-
ciency, and subgame perfection.

Definition 6: A strategy profile is fair and
Pareto efficient if

(12a)

and a subgame perfect NE if

(12b)
for all , , and any strategy of station .

We seek a strategy such that the strategy profile
(also denoted all- ) fulfills (12). Moreover,

should only depend on observable play paths. From a
practical viewpoint, should be simple (e.g., only depend on
recent play), yet responsive to variable play of other stations.
If found, can be made publicly known (note that the MAC
standard remains unaffected, as toggling between , , and

is performed by user accessible software). This marks a
change in perspective: instead of honest, selfish, and greedy
stations we now speak of standard and invader stations. A
standard station expects a fair bandwidth share and plays
(not necessarily honest in each stage). An invader deviates from

hoping for a more-than-fair bandwidth share. Condition
(12a) ensures that while allows selfish or greedy play, it
is by and large cooperative enough to achieve in the
absence of invaders. Condition (12b) discourages deviations
from ; yet they may occasionally occur due to a station’s
lapse of good judgment. In such cases, condition (12a) creates
a friendly “learn and reform” environment: when an invader
learns that it loses by deviating from and so reverts to , its
stage payoffs asymptote to , as do the other stations’.

V. CRISP STRATEGY

Seeking a subject to (12) for the repeated restricted
CSMA/CA game (with ) amounts to enforcing
cooperation in the Prisoners’ Dilemma, a classical game theory
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topic especially for the two-player case3 [11], [29], [33], [35].
Most solutions draw on the idea of generous tit-for-tat [3],
which applies a dose of generosity (playing honest regardless of
other players’ actions) in order to instill cooperation, while ad-
ministering enough punishment for failure to cooperate. Note,
however, that in the CSMA/CA game, station has only imper-
fect information on past configuration profiles; therefore it
is not certain which other stations have played selfish, and even
if it were, it would be unable to punish them selectively. The
presence of the greedy configuration further complicates the
picture. Our candidate strategy , called CRISP (Cooperation
via Randomized Inclination to Selfish/Greedy Play), inclines
to selfish or greedy play in the presence of invaders, but in
the absence thereof ultimately plays honest—thus imposes
self-punishment in order to punish an invader; the latter can
accept a diminished utility or revert to CRISP.

A. Strategy Description

A station adopting CRISP attempts to maintain all- by se-
lecting if no greedy or selfish play by some other station
has been detected in recent past. If selfish play has been de-
tected, CRISP starts toggling between selfish and honest play,
whereas if greedy play has been detected, CRISP toggles be-
tween greedy and selfish play. A public-knowledge infinite se-
quence ( , ) with , and a public-knowl-
edge integer threshold are defined; the latter controls the
selfish/honest toggling ( , where is the threshold
defined in Section III-B). The , inferred by a station in stage
via coarse profile observability, are compared to 0 and . Ac-
cordingly, only , , , ,
and are distinguished [cf. (9)]. Let this order be sym-
bolized by “ ” e.g., .

The play proceeds in phases, each spanning a number of
stages. We shall keep a uniform phase numbering, although
in phase each station may store a different current phase
number . If in stage no station has played greedy or
selfish, station keeps selecting in successive stages until
greedy or selfish play is detected. It does so also upon detection
of a downward trend in the observed play path, i.e.,

. If selfish play has been detected in a stage, station se-
lects with probability and with probability in
successive stages until it detects either a downward trend in the
observed play path, in which case it keeps selecting again,
or an upward trend, in which case phase starts (an event
referred to as a phase-up) and the selfish/honest toggling con-
tinues. If station detects greedy play in a stage, it selects
with probability and with probability in suc-
cessive stages until it detects either a downward trend in the
observed play path, in which case it retreats to selfish/honest
toggling as described previously, or an upward trend, in which
case the greedy/selfish toggling continues upon a phase-up.

Given the observed play path , the next selec-
tion is determined by the pair . A set
of pairs for which the selection follows in the same way

3A central result in game theory, the “folk theorem” [10], establishes the ex-
istence of such equilibria if the future and present stage payoffs are equally or
almost equally weighted, which (11) does imply.

Fig. 1. CRISP state transition graph; solid, dashed, and dotted arrows corre-
spond to downward trend, no trend, and upward trend in the play path, respec-
tively; I marks invader-only transitions.

defines a CRISP state prior to stage . The five relevant CRISP
states are defined by the following conditions (G, S, and H stand
for greedy, selfish, and honest play):

• H: or ,
• S/H: ,
• S/H&PHASE-UP: and ,
• G/S: , and
• G/S&PHASE-UP: and .

If then, assuming that stage belongs to
phase and the probability distribution over is encoded as
( , , ), we
have

if ,
if ,
if

PHASE-UP,
if ,
if

PHASE-UP.
(13)

Each station starts off with an arbitrary ; however, the
being public knowledge, from stage 3 on all the stations per-
ceive a common CRISP state (and perform phase-ups in step).
Fig. 1 depicts CRISP state transitions in stage . The solid,
dashed, and dotted arrows correspond respectively to the cases

, , and and reflect the work-
ings of CRISP without invaders. The transitions depicted as gray
arrows marked violate (13), hence can only occur in the ini-
tial stages and otherwise are solely due to the presence of in-
vaders. Under all-CRISP, indefinite looping is possible within
the states S/H and S/H&PHASE-UP, and within the states G/S
and G/S&PHASE-UP, whereas H is an absorbing state corre-
sponding to continued all- .

Fig. 2 shows an example scenario with and ;
for clarity it is assumed that no station ever plays greedy. Sta-
tions 1 and 2 are standard, i.e., play CRISP according to (13);
the phase-ups in stages 1 and 2 result from the initial states.
Station 3 deviates by playing selfish in stage 6 despite

(which would imply selecting
under CRISP). Were it not for this deviation, all- would settle
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Fig. 2. CRISP operation with three stations andM = 1 (shaded entries indi-
cate configurations selected at random, ! indicates a phase-up).

in from stage 5 on. As it is, the two CRISP stations have en-
tered the S/H state and continue to select their configurations at
random, which will cause a phase-up when more than select

(in our scenario, in nondepicted stage 9). Note why CRISP
cannot rely on the outcome of the last stage only: for example,
if were to imply then a single invader
constantly selecting would reap an unfairly large utility of

(compare and in Table II).
Detection of a station selecting brings about a painful pun-

ishment: all CRISP stations enter state G/S and require
in order to stop toggling between and , which takes

longer and longer to happen as increases. Under light to mod-
erate load, playing honest yields a distinctly nonzero bandwidth
share, therefore is constantly inferred (cf. Section III-B)
and so all- persists. The fact that CRISP only requires ternary
granularity of when no stations play greedy is of value given
that the success probabilities may be observed (thus may
be inferred) inaccurately. Finally, as shown below, CRISP ful-
fills (12) for a wide class of sequences and a range of ;
this leaves room for trading the speed of payoff convergence to

for punishment of invaders.

B. Pareto Efficiency and Subgame Perfection

We now look at sufficient conditions for CRISP to meet (12),
assuming throughout that remains constant during the game.

Proposition 2: Regardless of , all-CRISP is fair and Pareto
efficient.

Proof: We will show that for any initial play path,
converges in probability to . With

the transitions removed from Fig. 1, let random variable
represent the number of stages before reaching the absorbing
state H. Since for , we can write

if

if .
(14)

Recall that the stations may perceive different CRISP states in
at most two initial stages. Therefore, it is convenient to write

, where is the number of stages before reaching
H from the CRISP state in stage 3. Suppose that this state is S/H
or S/H&PHASE-UP. Then , where counts the
possible traversals of the lower left self-loop in Fig. 1 and the
transitions between different CRISP states before reaching H,
and counts the traversals of the left self-loop, respectively.
Clearly, is bounded (for there can be two phase-ups at
the maximum), whereas either is geometrically distributed
or is a sum of two independent geometrically distributed random

variables (corresponding to play path segments with constant
and constant ). We can reason similarly

if the CRISP state in stage 3 is G/S or G/S&PHASE-UP. Thus,
tends to one as increases. Since all the sum-

mands in (14) are bounded, the mean and variance of (14) tend
to and zero, respectively. This proves our assertion,
i.e., (12a) holds with .

Let us now verify (12b). Clearly, it holds if prescribes
playing honest indefinitely from some stage on, so assume
that spells of honest play by are finite with probability one.
That is, if represents the length of a honest play spell then

, a “persistent invader” feature. Under
the conditions stated below, yields a utility not exceeding

; this also proves that all-CRISP is a subgame perfect
NE provided that , which we have found
true in existing IEEE 802.11 settings.

Proposition 3: Let station play a “persistent invader”
, while for . If and

then
for .

Proof: First consider the case when no station ever plays
greedy. Assume (unrealistically) that station knows prior to
stage the number of other stations playing selfish in stage

. Then there is no better play than to select when
: not being able to cause a transition to an-

other CRISP state, station just maximizes its stage payoff
according to part (ii) of Proposition 1. Let the resulting av-
erage stage payoff in phase be , where

, and is the stage at the
beginning of which the phase-up occurs. Thus, it must be
that . In the case
phase lasts one stage if (the lower left self-loop in
Fig. 1 is traversed, i.e., another phase-up occurs), otherwise lasts
a finite number of stages involving traversals of the left self-loop
and possibly an ensuing spell of honest play by station . There-
fore, regardless of how station replies to ,

, where is
the probability of out of the CRISP stations selecting
in stage , , and is a bounded value.
As increases, all the tend to one; so does and, since

, also . (How station responds to
becomes immaterial as increases, since

becomes then arbitrarily small.) Hence, converges in prob-
ability to . If then with probability
(tending to one) phase involves a nonzero number of traversals
of the left self-loop. For large , the mean of conditioned on
the number of stages between a transition to state H and an-
other phase-up can be expressed as

(15)

where is the number of traversals of the lower left self-loop,
, and is a

bounded value. Since , and recalling that
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, we find that for large the right-hand
side of (15) asymptotes to , hence tends to as
increases. Similarly, the conditional variance of asymptotes
to , which tends
to zero as increases. Convergence in probability of to

has thus been established.
To complete the proof note that for large and ,

can be approximated by
.

Let be such that for all ,
. The number of occurrences

between and (say in phases ) is stochastically
bounded4 by a Bernoulli random variable with
trials and success probability . Thus, with probability close to
one, is

where is a bounded value. It is visible that if and are suf-
ficiently small and increases, the probability distribution
of the right-hand side concentrates around zero. Thus, con-
verges in probability to .

If greedy play is allowed then we distinguish two cases. If
the invader plays greedy only finitely many times, the above
reasoning can be repeated without modification. Otherwise for
large , phase involves traversals of either the left or the right
self-loop in Fig. 1 (in either case possibly followed by a spell of
honest play). Thus, the mean of is given, respectively, by (15)
or an expression analogous to (15) with replaced by 0 (the
stage payoff in the presence of other stations playing greedy).
Consequently, as increases, the probability distribution of
concentrates below .

Strategies simpler than CRISP may not fulfill (12a) or
(12b). Imagine an invader station that never plays greedy,
and a “deficient” CRISP, where is
not followed by a phase-up. By always selecting , station

causes phase to last forever, cycling within the states H,
S/H, and S/H&PHASE-UP without increasing . Then
is a weighted average of (when state H is passed)
and . This average may exceed

, so (12b) may be violated. As another example,
suppose that no distinction is made between and

, and only and are distinguished
instead. To discourage an invader from always selecting , a
phase-up should follow each pair , . Viola-
tion of (12a) is now possible since the succession of such pairs
need not be finite with probability one. (Its eventual termination
is guaranteed by the inverse Borel–Cantelli lemma [9] if the
series diverges, e.g., if

with .)

4A random variable X is stochastically bounded by a random variable Y if
Prob[X � k](Prob[Y � k] for all k.

Fig. 3. All-CRISP convergence of stage payoffs to b (N; 0): (a) small p ; (b)
large p and no greedy play.

C. Performance

To illustrate the fulfillment of (12), the stage payoffs were
calculated from (5) for a 54-Mb/s IEEE 802.11a setting with
basic access, 1500-byte DATA frames, , ,

, and (all durations expressed in
byte transmission time units). Sample play paths of the repeated
CSMA/CA game were generated via Monte Carlo simulation.
Throughout the experiments, was fixed. The sequence

was defined recursively as , where
the parameter controls the rate of growth of as
increases. Four CRISP characteristics affect the performance:

, , and the initial CRISP state and probability at
the start of a simulation run; these varied from experiment to
experiment. Each CRISP station was initialized with a random

chosen from (0, 0.2), (0, 0.5), or (0, 1), and with a random
chosen either from all the five feasible states or from H,

S/H, and S/H&PHASE-UP only. Stage payoffs were normal-
ized with respect to and averaged over 1000
runs to produce satisfactory confidence intervals. In addition,
the arithmetic average of the resulting averages was taken over
all CRISP stations to produce a single representative CRISP
payoff trajectory. By recording the average payoffs in succes-
sive stages one arrives at the plots in Fig. 3 and Fig. 4. Some
reference normalized payoff levels are 12.1, 11.7, and 0.4, corre-
sponding to the stage payoffs , ,
and , respectively.

In Fig. 3(a) and (b), all the stations play CRISP, i.e., the tran-
sitions do not occur (possibly except for the two initial stages).
Eventually, each station detects a downward trend in the play
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Fig. 4. CRISP in the presence of an invader: (a) punishment of “persistent in-
vader”; (b) “learn and reform” scenario; (c) “persistent invader”, versus “defi-
cient” CRISP.

path and enters the absorbing state H. Thus, after a period of
transient behavior, the configuration profile all- sets in, with
the stations’ normalized stage payoffs approaching 1. This oc-
curs the sooner, the larger are and ceteris paribus (note that

quantifies a station’s reluctance to raise the probability of se-
lecting or in successive phases). The relative significance
of and depends on and . In Fig. 3(a), is chosen
from all feasible states and varies from 0 to 0.5. The
and trajectories are barely distinguishable since in most
cases the play path before all- sets in only involves states
G/S and G/S&PHASE-UP. A similar situation arises when
is chosen from H, S/H, and S/H&PHASE-UP only, which under
all-CRISP implies that no station ever plays greedy. However,
with chosen from (0, 1), a larger visibly speeds up the
convergence to , as it makes a downward trend in the
play path more probable. E.g., with , all- was ob-
served in stage 50 in 53% and 84% of runs for and

, respectively, while with the corresponding
figures were 34% and 68%. For all- to set in early, and
should be configured jointly—taking a large alone may not
be the best option since the distinction of and

might then be problematic, cf. Table II.
Not surprisingly, large and especially backfire if a “per-

sistent invader” station is to be punished. In Fig. 4(a), all sta-
tions play CRISP except station . In an attempt to conceive a
“good” reply to CRISP when no station plays greedy, we let the
invader predict prior to stage
and select whenever and other-
wise. If such play differs from what CRISP prescribes, the stage
counts as a “selfish deviation” from CRISP. In the presence of
greedy play, the invader predicts
and selects whenever and other-
wise. That is, it is careful not to prevent a downward trend in the
play path, with the prospect of playing in the next stage and
landing a stage payoff of . “Greedy deviations” from CRISP
are likewise counted. We stress that such an invader strategy is
unrealistic (unless station is capable of instant accurate esti-
mation of own and total success probability at the beginning of
a stage). To take our idealization even further, we let station
optimize the number of “greedy deviations” and “selfish devi-
ations” so that its payoffs stay above as long as pos-
sible. In most experimented scenarios, optimum invader play
consisted in no “greedy deviations” and infinitely many “selfish
deviations,” which confirms that invader stations may not be in-
terested in greedy play, cf. the discussion in Section III-B. Nev-
ertheless, one observes in Fig. 4(a) that the invader eventually
fares worse than it would playing CRISP, its normalized stage
payoffs slowly approaching 0.4. With large and the pun-
ishment for deviation from CRISP is less prompt and, within
the first few dozens of stages, less severe. Clearly, the speed of
convergence to all- and punishment of invaders are in direct
conflict and compromise CRISP parameters should be sought.

Fig. 4(b) illustrates the “learn and reform” environment cre-
ated by CRISP. Station plays the above invader strategy up to
stage 200 and subsequently reverts to CRISP. As a result, both
the invader’s and the CRISP stations’ normalized stage payoffs
asymptote to 1 at a rate dependent on . With , how-
ever, station may have taken more than 200 stages to learn
that deviation from CRISP is not beneficial. On the other hand,
the subsequent convergence to is much faster than for

. (It would be even faster if station had “reformed” be-
fore stage 200, e.g., having noticed the rapidly decreasing stage
payoffs and inferred the presence of CRISP stations.)

As pointed out before, strategies less smart than CRISP may
not resist smart enough invaders. For example, having failed
against CRISP, the above idealized invader strategy adopted at
station turns out quite beneficial against a “deficient CRISP”
in which no phase-ups occur [Fig. 4(c)]. When playing against

“deficient CRISP” stations with , station ob-
serves the hover in the region of four to seven times the fair
payoff , the exact markup depending on and .

Finally, the postulate that CRISP be used as a standard
strategy (i.e., standard stations are committed to CRISP) has a
bearing on the CSMA/CA game: awareness of this is precisely
what makes an invader “reform.” Suppose to the contrary that



1176 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

standard stations are not committed to any strategy, but the
invader is committed to the above described one, and that this is
common knowledge. In Fig. 4(c), CRISP stations draw from
(0, 0.2); this was found not to affect their payoffs significantly.
Comparison of the plots in Fig. 4(b) and (c) reveals that for

and , “deficient CRISP” stage payoffs level off
distinctly above those of regular CRISP stations (approximately
0.9 versus 0.5). Depending on one may even expect “deficient
CRISP” stage payoffs rise above (cf. the
“deficient CRISP” trajectory, which levels off at about 1.05).
That is, the presence of an invader may create a win-win situa-
tion. Without an incentive (in fact with a slight disincentive) to
activate phase-ups, the standard stations’ best reply is to let the
invader enjoy its unfairly large bandwidth share indefinitely.5

D. Enforceability

Intuitively, any “persistent invader” will be asymptotically
punished, and thus forced into reverting to CRISP, provided that
enough stations play CRISP. This leads to the notion of enforce-
ability.

Definition 7: Let fulfill (12) and be a “persistent
invader” strategy. Strategy is -enforceable if for any

with , any , and any
such that , .

That is, “persistent invaders” are punished if at least out of
stations play . Note that Proposition 3 states conditions for
, -enforceability of CRISP.
Proposition 4: Let

Assume that and ,
where is the largest integer satisfying

. There exists a
such that if for then

CRISP is -enforceable.
Proof: Let stations play CRISP, while out of the

other stations are “persistent invaders” never playing
greedy. Let of the latter play selfish in stage , and suppose
(unrealistically) that their total payoff is somehow distributed
evenly among all the “persistent invaders,” and that they can
optimize based on the predicted number of stations to
select in stage . An invader’s utility is thus upper bounded
by (where was
defined in the proof of Proposition 3). Consider first the case

. In each phase , the number of CRISP state
transitions is finite with probability one, since the probability of
leaving the left self-loop in Fig. 1 is at least
(the invaders are too few to cause indefinite looping with
constant even if each of them selects all the time
and, since , CRISP stations are sufficiently many to
terminate looping with constant ). Hence, the play
undergoes infinitely many phases and so tends to one
as increases. In the case , the invaders have the
option of causing the CRISP stations to indefinitely self-loop
with constant without a phase-up. If then

5This may be viewed as an example of the so-called Stackelberg equilibrium
[31], the invader assuming the role of the “leader.”

TABLE III
CHARACTERISTICS RELATED TO CRISP ENFORCEABILITY

, therefore a close enough to one ensures that
again becomes arbitrarily close to one. Thus, in either

case, for above a threshold, the invaders each receive a utility
not exceeding . Since , this
is less than .

Greedy play by invaders does not affect -enforceability.
If any of them plays greedy infinitely many times then phases
with greedy/selfish as well as with selfish/greedy toggling may
occur. It is easy to see that in the former, indefinite looping in
state G/S with exactly one station playing greedy occurs with
probability zero; thus the probability distribution of stage pay-
offs concentrates around zero.

In light of the above argument, greedy play need not be con-
sidered a serious threat. The fact that in
existing IEEE 802.11 settings makes Proposition 4 nontrivial,
as it implies . To obtain a lower bound
on note that if and decrease in (cf.
Section III-B) then does too. If then by
substituting into the inequality

, one overes-
timates the left-hand side, so is the minimum value of

satisfying it. Denote ; in par-
ticular, is the minimum number of CRISP
stations that can force the other stations into playing CRISP in
an -station WLAN, provided that the are sufficiently large
and that . Table III shows for several ; it fol-
lows that three CRISP stations can force up to two invaders (5,3-
enforceability), five can force up to five (10,5-enforceability),
six can force up to nine (15,6-enforceability), eight can force up
to twelve (20,8-enforceability) etc. Roughly speaking, half the
stations at the minimum should play CRISP to instill all-CRISP.
The corresponding values of are shown beside

; they answer the question how to configure the se-
quences at CRISP stations. Conversely, supposing that CRISP
is configured with (say), how many CRISP stations are
necessary to instill all-CRISP given ? This amounts to finding

; exemplary values appear in the bottom row.

VI. CONCLUSION

Given that a selfish station can fix any as an alterna-
tive to the standard , we have argued that and are rea-
sonable choices. If a station can switch between and ,
a CSMA/CA game arises that resembles a multiplayer Pris-
oners’ Dilemma with a unique Pareto inefficient NE; if is
allowed, any NE is either Pareto inefficient or unfair and yields
zero payoffs to most of the stations. As a defense against the
backoff attack, a strategy called CRISP has been proposed and
found to have a few desirable properties. It leaves the MAC
protocol unaffected and only relies on stage-by-stage observa-
tions of success probabilities; the toggling between , , and
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can be performed by NIC driver software. It is not invoked
under light or moderate load, i.e., when selfishness is not a real
danger. Neither does it involve guessing the other stations’ con-
figurations or violation of station anonymity. Deviations from
CRISP are discouraged on a disincentive basis in that a single
invader station finds its bandwidth share asymptotically infe-
rior to what it would receive playing CRISP. Finally, a certain
minimum number of CRISP stations can force multiple invaders
into playing CRISP. The inherent vulnerability to a malicious
(denial-of-service) attack does not disqualify CRISP, given that
such an attack can be launched anyway, e.g., using random jam-
ming.

Compared with [7], CRISP attributes more introspection to
the stations, leading to the conviction that only , , or are
likely to be configured. It also requires synchronization to stage
boundaries. In return, no selective punishment for misbehavior
is necessary (which in [7] permits to convert any configuration
profile into a NE, but implies both station identification and vio-
lation of the MAC standard). Moreover, not all play paths of the
dynamic game described in [7] end up at a Pareto efficient NE.

Subgame perfection of all-CRISP was only proved for the
liminf-type utility (11). Thus, WLAN stations are assumed to
put equal weight on near and distant future payoffs (i.e., there is
no discounting of future payoffs). This sounds a little unrealistic
in volatile WLAN environments and implies only asymptotic
punishment of a “persistent” invader, whereas a “nonpersistent”
one will not be punished at all. However, as Fig. 4(a) shows,
punishment of a “persistent” invader typically follows within a
reasonable time (on order of a few hundred stages). One can
also see that CRISP is better than a trivial punishment strategy
(e.g., jamming all DATA frames) for the standard stations still
receive 50% to 70% of the fair bandwidth share while punishing
an invader.

Two more drawbacks of CRISP require further attention.
First, must be configured relative to , which is unknown
to any station and may change over time. However, can be
inferred from , cf. Table II, and dynamic agreement
on among CRISP stations can be envisaged. Second, the

have to be kept from permanently staying close to one;
occasional reset to moderate values may be in order after a long
enough period with no invaders detected.
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