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Coalition Formation Games for Distributed
Cooperation Among Roadside Units in

Vehicular Networks
Walid Saad, Zhu Han, Are Hjørungnes, Dusit Niyato, and Ekram Hossain

Abstract—Vehicle-to-roadside (V2R) communications enable
vehicular networks to support a wide range of applications
for enhancing the efficiency of road transportation. While ex-
isting work focused on non-cooperative techniques for V2R
communications between vehicles and roadside units (RSUs),
this paper investigates novel cooperative strategies among the
RSUs in a vehicular network. We propose a scheme whereby,
through cooperation, the RSUs in a vehicular network can
coordinate the classes of data being transmitted through V2R
communication links to the vehicles. This scheme improves
the diversity of the information circulating in the network
while exploiting the underlying content-sharing vehicle-to-vehicle
communication network. We model the problem as a coalition
formation game with transferable utility and we propose an
algorithm for forming coalitions among the RSUs. For coalition
formation, each RSU can take an individual decision to join or
leave a coalition, depending on its utility which accounts for the
generated revenues and the costs for coalition coordination. We
show that the RSUs can self-organize into a Nash-stable partition
and adapt this partition to environmental changes. Simulation
results show that, depending on different scenarios, coalition
formation presents a performance improvement, in terms of the
average payoff per RSU, ranging between 20.5% and 33.2%,
relative to the non-cooperative case.

Index Terms—Vehicle-to-roadside communications, coalitional
game theory, coalition formation game, vehicular networks.

I. INTRODUCTION

RECENT advances in the integration of communication
and sensor technologies have triggered the deployment

of numerous attractive applications for road transportation
systems. In this regard, networks of connected vehicles con-
stitute the main building block of intelligent transportation
systems (ITS) and are the basis for a diversity of applications
that can enhance the safety and comfort of road transporta-
tion (e.g., through providing road traffic condition, remote
vehicle monitoring, accident prevention, payment services,
security applications etc.) [1]. In order to support different
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ITS applications, both vehicle-to-roadside (V2R) communi-
cations and vehicle-to-vehicle (V2V) communications need
to be supported in vehicular networks. On one hand, V2R
communications allow the vehicles to connect, through their
on-board units (OBUs), to the roadside units (RSUs) belonging
to one or several service providers, in order to download
(or upload) various types of data related to a variety of
applications. On the other hand, V2V communications enable
a group of vehicles to communicate and exchange information
for different purposes.

Existing work has already explored various aspects of
V2R and V2V communications. For instance, in [2], a low-
complexity scheme for packet scheduling for downlink and
uplink transmissions over V2R communication links (between
an RSU and multiple OBUs) is proposed. The authors in [3]
propose an IEEE 802.16-based protocol for data communi-
cation between a cluster of vehicles and an RSU. Further,
an experimental testbed for traffic congestion detection and
emergency warning using V2R and V2V communication is
presented in [4]. In [5], the authors propose a non-cooperative
Bit Torrent-based approach for data distribution between the
RSUs and the OBUs of the vehicles as well as a Nash
bargaining solution for V2V data exchange. Multiple antenna
techniques are proposed in [6] for enhancing the performance
of V2R communications. The work in [7] studies a proto-
col, using time sharing for inter-vehicle message delivery
with short and deterministic delay bounds in a V2V ad hoc
network. The objective of the work in [7] is to improve
the safety of vehicular networks. In addition, the work in
[8] proposes an effective protocol, comprising congestion
control policies, mechanisms for service differentiation, and
methods for emergency warning dissemination using V2V
communications. Further, the use of V2V communications and
cooperation among sensor-equipped vehicles is studied in [9]
for proactive urban data monitoring. Other aspects of V2R
and V2V communication such as routing, security, channel
modeling, and authentication are studied in [10]–[16].

Most of the existing work in vehicular networks have
focused on communication technologies for V2R or V2V com-
munication, content-sharing through V2V cooperation as well
as on non-cooperative data delivery between the RSUs and the
OBUs of the vehicles through V2R communications. Nonethe-
less, one challenging aspect of vehicular networks that remains
unexplored is the design of cooperative strategies among the
RSUs for improving the diversity of the data circulating in
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the network as well as for exploiting the data exchange
capabilities of the underlying V2V networks. By exploring the
possibilities of content-sharing among the vehicles, the RSUs
in a vehicular network can cooperate in order to coordinate
the classes of data that they will transmit to their served
vehicles. For example, instead of non-cooperartively sending
information on the traffic of the same geographical location
to their served vehicles, two RSUs can cooperate to send
information on the traffic conditions at different locations, and,
subsequently, rely on the V2V data exchange for disseminating
this data to all the vehicles traveling between them. Therefore,
by using an efficient V2V data exchange protocol, all the
vehicles moving between the two RSUs will acquire traffic
information on different geographical areas without the need
for passing by multiple RSUs (for example). By doing so, the
RSUs can obtain more revenues from the vehicles since they
are providing them with a more diverse amount of information
through cooperation. Further, from the vehicles’ perspective,
due to the short duration that a vehicle spends at an RSU
[1]–[3], [5], it is common that a vehicle merely has time to
download a limited number of chunks or packets, e.g., related
to a single class of data. By enabling cooperation among the
RSUs, the vehicles will be able to obtain more diverse classes
of data, by, for example, downloading a class from one RSU
and engaging in V2V communication with other vehicles that
obtained a different class of data from other cooperative RSUs.
To the best of our knowledge, no existing work has studied
this cooperation problem among RSUs, notably from a game
theoretical perspective.
The main contribution of this paper is a novel cooperation

protocol that enables the RSUs in a vehicular network to
maximize the revenues they obtain from the data they convey
to their served vehicles. Through cooperation, the RSUs can
diversify the classes of data that they transmit to their served
vehicles, depending on the content-sharing possibilities of the
underlying V2V network connecting the vehicles circulating
between them. We model the problem as a coalition formation
game among the RSUs, and we propose a distributed algorithm
for forming the coalitions. Through the proposed algorithm,
each RSU can take a distributed decision to leave its current
coalition and join a new one while maximizing its utility. This
utility accounts for the gains in terms of the total revenue
generated from the data transmitted to the vehicles as well
as the costs for coordination inside the coalition. We show
that, by using the proposed coalition formation algorithm,
the RSUs can self-organize into a Nash-stable partition, as
well as adapt this partition to environmental changes such
as a change in the average vehicle traffic passing by each
RSU. Simulation results show that, depending on the scenario,
coalition formation allows the RSUs to self-organize while
improving their average payoff between 20.5% and 33.2%,
relative to the non-cooperative case.
The remainder of this paper is organized as follows: Sec-

tion II presents the proposed system model. In Section III,
we model the problem of cooperation among RSUs as a
transferable utility coalitional game and propose a suitable
utility function. In Section IV, we classify the proposed
coalitional game as a coalition formation game, we discuss its
key properties, and we introduce the algorithm for coalition

formation. Simulation results are presented in Section V.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a network consisting of N RSUs and let N denote
the set of all RSUs. We denote by C = {c1, . . . , cL} the set
of cardinality |C| = L which represents the classes of data
that can be distributed by any RSU i ∈ N . Further, each RSU
i ∈ N engages in a V2R communication with an average of
Kij vehicles that enter into the network, pass by this RSU,
and move towards RSU j ∈ N , i �= j. We let Kij denote the
set containing Kij vehicles moving from any RSU i towards
any RSU j. Each vehicle k ∈ Kij passing by an RSU i ∈ N ,
connects to this RSU for a period of time and downloads
an average of Pk,i chunks of data. The data downloaded by
vehicle k belongs to class cij

l ∈ C transmitted by RSU i to all
vehicles traveling in the direction of RSU j. Due to the short
period that a vehicle can spend at an RSU, we consider that
each RSU selects only one class of data from C to transmit, at a
time, to the vehicles in a given direction. Further, for multiple
access, any scheme can be adopted by the vehicles as long
as it ensures that they are able to successfully download the
required data from the RSUs.
A payment operator, i.e., an entity which takes care of

collecting payments on behalf of the RSUs, charges every
vehicle k, after passing by its first RSU and prior to meeting
its next RSU (or exiting the network), a fee proportional to
the total amount of data that this vehicle carries at that time.
This amount of money is then distributed by the operator to
the RSU(s) that transmitted the data obtained by vehicle k.
For each class of data ck, there is a corresponding priority
(weight) wck

≤ 1 which quantifies the importance of this data
for the vehicular network. As the weight of the data increases,
the operator charges the vehicles a higher price for receiving
this data. For convenience, we consider that the data classes in
the set C are ordered such that wc1 > wc2 > · · · > wcL . Note
that, although in some situations, the RSUs may also need to
pay some stipulated fees for the underlying vehicular network,
throughout this paper, we consider that this fee is a one time
payment (for example, collected periodically every month or
year) that will not affect the continuous revenue stream that the
RSUs receive through the packets downloaded by the vehicles.
Nonetheless, in scenarios where the fee paid by the RSUs is
quite considerable, one can still apply the approach proposed
in the remainder of this paper.
In the considered network, we assume the presence of a

V2V content-sharing scheme which allows the vehicles to
communicate and exchange data among each other when
possible. However, in a non-cooperative approach, as is often
the case, we consider that the RSUs are not aware of this
underlying V2V content-sharing network. The motivation be-
hind this assumption is that, without coordination, the RSUs
cannot estimate the fraction of vehicles that can potentially
meet and share content, nor the amount of vehicles moving
in their direction, and, consequently, they are unaware of the
vehicle-to-vehicle content-sharing that can potentially occur.
Therefore, in a non-cooperative scenario, it is beneficial for
any RSU i ∈ N to transmit the chunks of data related to the
class c1 with highest priority for all the vehicles passing by
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this RSU, in order to maximize its revenue.1 Consequently,
the non-cooperative utility of any RSU i ∈ N can be given
by

u({i}) = β ·
∑
j∈N
j �=i

∑
k∈Kij

(w1 · Pk,i) (1)

where w1Pk,i represents the effective worth of the data
downloaded by vehicle k and β is the price charged by the
payment operator for one unit of effective data. For example,
for an RSU i that is serving the same number of vehicles K
in every direction and where each vehicle is downloading the
same amount of data P , (1) becomes β · (N − 1)Kw1P .
For increasing their revenues, the RSUs can cooperate and

exploit the underlying V2V content-sharing network. We limit
our attention to pairwise V2V content-sharing algorithms such
as those in [1] or [5] whereby V2V communication occurs
between pairs of vehicles that can meet and exchange their
data. Further, we consider that this content-sharing occurs
prior to the collection of the fees by the operator. Hence,
between every pair of RSUs i ∈ N and j ∈ N , i �= j, we
consider that a certain average number of pairs of vehicles
can meet and engage in V2V content sharing. We denote
this number by mij(dij) such that: (i) Each pair of content-
sharing vehicles consists from a vehicle moving from i to j
which is able to meet up with another vehicle moving from
j to i, (ii) mij(dij) is a decreasing function of the distance
dij between RSUs i and j (as the RSUs are more distant,
it becomes less likely that the pairs of vehicles circulating
between them would meet), and (iii) The maximum number
of pairs of vehicles that can meet on a link between an RSU i
and an RSU j corresponds to the minimum between Kij and
Kji, i.e., mij ≤ min (Kij , Kji). The set of vehicles initiating
at any RSU i ∈ N that will potentially meet other vehicles
initiating at any RSU j ∈ N over the path between i and j is
denoted by Mi (note that, for a path between an RSU i and
an RSU j, |Mi|+ |Mj | = mij(dij)). To evaluate the average
number of pairs of vehicles mij that can meet between any
two RSUs i and j, one can use the following expression:

mij = δdij · min (Kij , Kji) (2)

where 0 ≤ δ ≤ 1 represents the fraction of vehicles that can
meet when the distance between two RSUS is 1 km. The
model in (2) is inspired from the well-known connections
model used in network formation games [17] for highlighting
the friendship relationships among individuals as a function
of their distance. Note that, other models for mij can also be
accommodated.
Consequently, given any group of cooperating RSUs, i.e.,

any coalition S ⊆ N , the RSUs inside S can perform a
cooperative protocol composed of the following steps:

1) Every pair of RSUs i ∈ S, j ∈ S, i �= j can commu-
nicate over the infrastructure to inform each other of
the average number of vehicles Kij that are circulating
from RSU i to the direction of RSU j as well as the
average number of vehicles Kji moving from RSU j

1This is also the most beneficial for the vehicle since, once it enters the
network and meets its first RSU, it needs to get the most important class of
data.

in the direction of RSU i. In addition, RSUs i and j
can exchange the distance between them and additional
information on the behavior of the traffic circulating
between them.

2) Using the exchanged information, every pair of RSUs
i ∈ S, j ∈ S, ∀i, j ∈ S s.t. i �= j can estimate the
numbermij(dij) of pairs of vehicles that can potentially
meet on the path between them.

3) Following the information exchange, the members of
coalition S can coordinate the classes of data that each
RSU i ∈ S needs to transmit to its served vehicles.
The classes are agreed upon by the coalition members
in a way to maximize the amount and diversity of the
data received by the vehicles through joint V2R (data
downloaded from the RSUs by the vehicles) and V2V
(data exchanged between every pair of vehicles that
meet) communication. This coordination is limited to
selecting the classes of data sent between any two RSUs
i ∈ S and j ∈ S inside the same coalition. For vehicles
moving from an RSU i ∈ S in the direction of RSU
k ∈ N \ S outside S, RSU i will still transmit the data
of class c1, i.e., highest priority data.

Using this cooperative protocol, the RSUs that are members
of any coalition S are able to maximize the revenue they
receive from the operator by exploiting the existence of a
diversity of data classes as well as the presence of a V2V
content-sharing network. Note that, for distinguishing between
packets received from RSUs and packets received from other
vehicles both RSUs and vehicles can append a small header on
each packet in order to indicate its origin. Such an approach
is commonly used to distinguish among packets transmitted
from different sources [1], [18].
Hereafter, we consider that any vehicle moving from an

RSU i ∈ N to an RSU j ∈ N is charged by the network after
engaging in V2V communication but right before reaching
RSU j (or exiting the network), and, thus, the content that
can potentially be downloaded from RSU j is out of the
scope of the current model. For instance, the objective of this
paper is to highlight the potential benefits that cooperation
among the RSUs can yield for the network. Hence, this work
emphasizes how exploiting cooperation among the RSUs, even
it occurs only during the initial communication stages, can
potentially yield important and interesting benefits for the
RSUs (more revenues generated by exploiting the underlying
V2V network) and the vehicles (more diverse traffic after
passing through their first RSU) as well. Certainly, one can
see that coalition formation would still be beneficial when
considering the data downloaded by the vehicles at multiple
RSUs. For example, if two RSUs cooperate using our approach
while taking into account the data downloaded by the vehicles
at both RSUs and exploiting the underlying V2V possibilities,
they can allow each vehicle traveling between them to receive
three classes of data (one at the first RSU, one through V2V,
and one at the second RSU) instead of only two in the
non-cooperative case (one at the first RSU and one at the
second RSU since the non-cooperative RSUs do not coordinate
their data classes based on the underlying V2V network).
Thus, coalition formation for the case where the vehicle can
download data from multiple RSUs is not considered in this



SAAD et al.: COALITION FORMATION GAMES FOR DISTRIBUTED COOPERATION AMONG ROADSIDE UNITS IN VEHICULAR NETWORKS 51

paper but it can be easily accommodated in future work. For
example, one approach to do this would be to allow the RSUs
to re-engage in the coalition formation algorithm proposed
in this paper, periodically, given an estimate of the traveling
routes of the vehicles.
Finally, in order to better illustrate the proposed cooperation

protocol and model, consider the case of N = 2 RSUs with
an average of K12 = 2 vehicles moving from RSU 1 in the
direction of RSU 2 and K21 = 2 vehicles moving from RSU
2 in the direction of RSU 1. We assume that the total number
of packets downloaded by each vehicle from its serving RSU
is 1. Further, we consider that the two RSUs are close enough
such that m12 = 2 pairs. In a non-cooperative system, RSU 1
(RSU 2) is not aware of the traffic coming from RSU 2 (RSU
1) and thus cannot estimate m12. Consequently, both RSU 1
and RSU 2 send packets of the highest priority, i.e., c1 and, by
setting wc1 = 0.6, their utilities are v({1}) = v({2}) = 1.2β,
respectively, as given by (1). By cooperating and forming
coalition S = {1, 2}, the two RSUs can increase the revenue
they receive. For example, when coalition S forms, the two
RSUs can decide that RSU 1 sends data of class c1 while RSU
2 sends data of class c2 with weight wc2 = 0.5. Due to the
V2V content-sharing among the vehicles traveling between the
two RSUs (which are members of S), prior to reaching the
next RSU, the total effective data received by each vehicle
is β(wc1 + wc2). Consequently, the total revenue generated
from an average of 4 vehicles which are traveling between
two RSUs is 4β(wc1 + wc2) = 4.4β (since m12 = 2 pairs
with K12 = K21 = 2, all pairs of vehicles moving in
opposite directions between the two RSUs will meet and
engage in pairwise V2V content sharing). If the payment
operator divides this revenue equally between the members of
S and assuming that the RSUs pay no cost for cooperation,
then, each RSU receives 2.2β which is a clear improvement
over the non-cooperative utilities.
In a nutshell, by exploiting the underlying V2V content-

sharing capabilities the RSUs in a vehicular network can
improve the revenues they obtain from V2R communication
with their served vehicles. An illustrative example of a sample
network structure is shown in Fig. 1 for N = 5 RSUs and
L = 3 data classes. In this figure, nearby RSUs with relatively
high traffic among them form a cooperative coalition while
coordinating the classes of data transmitted in a way to exploit
the potential V2V content-sharing that can take place.
In the next section, we formulate the cooperation problem

among RSUs, develop a suitable utility function, and model
the problem as a coalition formation game with transferable
utility.

III. COALITIONAL GAME FOR COOPERATION AMONG

RSUS
For mathematically modeling the cooperation problem

among the RSUs of a vehicular network, we use coalitional
game theory [19]–[21]. In particular, this problem is modeled
as a coalitional game with a transferable utility [19, Chap. 9]:
Definition 1: A coalitional game with transferable utility

is defined by a pair (N , v) where N is the set of players and
v is a function over the real line such that for every coalition
S ⊆ N , v(S) is a real number describing the amount of utility

Fig. 1. An illustrative example of coalition formation for cooperation among
RSUs for a network with N = 5 RSUs and L = 3 data classes.

that coalition S receives and which can be distributed in any
arbitrary manner among the members of S.
For the problem of cooperation among RSUs, given any

coalition S ⊆ N , we define BS = {b1, . . . , b|S|} as the tuple
with every element bi representing a class of data in C selected
by an RSU i ∈ S, assumed to be the same for the vehicles
starting from RSU i and moving on all directions to RSUs
inside coalition S. Let us denote by BS the family of all
such tuples for coalition S which corresponds to the family
of all permutations, with repetition, for the RSUs in S over
the data classes in C. Note that, as previously mentioned, for
the vehicles moving between an RSU i ∈ S and any RSU
l ∈ N \ S outside coalition S, RSU i will always use the
class of data with the highest priority, i.e., c1. Consequently,
by adopting the cooperative protocol described in the previous
section, the total revenue generated by any coalition S ⊆ N
is given by

u(S) = max
BS∈BS

⎛
⎜⎜⎝β

∑
i∈S

⎛
⎜⎜⎝ ∑

j∈N\S
j �=i

∑
k∈Kij

(wc1 · Pk,i)+

∑
j∈S
j �=i

∑
k∈Kij\Mi

(wbi · Pk,i) +
∑
j∈S
j �=i

∑
k∈Mi

(
(wbi + wbj ) · Pk,i

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠
(3)

where wc1 represents the weight associated with data class c1

of highest priority and wbi represents the weight of the data
transmitted by RSU i ∈ S when this RSU selects data class
bi ∈ C as per tuple B∗

S that maximizes v(S). Further, Mi

represents the set of vehicles starting from RSU i ∈ S that
will engage in V2V content-sharing with the vehicles in the
set Mj , i.e., the vehicles initiating at RSU j ∈ S.
The revenue function in (3) represents the total payment

that a coalition of RSUs receives from the operator, after the
vehicles traveling among the RSUs in S pay the operator prior
to reaching their next RSU or, even, exiting the network. For
an RSU i ∈ S, the first term in (3) represents the revenue
from the data traffic between i and all RSUs external to S
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(that do not rely on any V2V communication). The second
term represents the total revenue from the vehicles originating
from RSU i and which are unable to meet any vehicle moving
from any other RSU j ∈ S. In other words, the second term is
the revenue from the data sent to vehicles that travel between
two RSUs inside the same coalition without engaging in any
V2V content-sharing. Finally, the third term represents the
gains from the data received by all vehicles passing by RSU
i ∈ S and which are able to engage in V2V pairwise content-
sharing with other vehicles moving from other members of
S towards RSU i. Hence, the third term in (3) quantifies the
gains that the RSUs can receive from exploring the existing
V2V communications network.2

Note that, in both (1) and (3), we consider that any vehicle
k is able to receive successfully the Pk,i chunks of data
related to a certain class transmitted by RSU i. In practice,
the actual number of packets successfully received would
effectively be less than Pk,i due to the wireless channel fading
which accounts for the Doppler effect. In order to take this
effect into account, in (1) and (3), the number of packets
received should be multiplied by a term corresponding to the
probability of successful transmission (or probability of error)
in presence of channel fading that is a function of the Doppler
frequency. Nonetheless, the advantage of cooperation would
still hold because whether the effect of channel fading/Doppler
is accounted for or not, cooperation will allow the RSUs to
exploit the underlying V2V network and, thus, improve the
overall performance.
Although cooperation can yield additional revenues for the

RSUs as per (3), these gains are limited by inherent costs
that need to be paid by the RSUs when acting cooperatively.
These costs can be captured by a cost function c(S) which will
limit the gains from cooperation obtained in (3). Although the
analysis in the remainder of this section can be applied for
any type of cost functions, we consider a cost function that
varies linearly with the size of the coalition as follows:

c(S) =

{
α · |S|, if |S| > 1
0, otherwise

(4)

where α is a pricing factor. The main motivation behind this
cost function is that, in order to achieve the revenue function
in (3), the RSUs belonging to a single coalition S need to syn-
chronize their communication and maintain an open channel
between them to exchange information, determine the classes
that need to be sent by each RSU, and so on. Moreover, when
the RSUs belong to different service providers, they might be
required to pay a certain fee for coordinating their cooperative
behavior over each others infrastructure. Consequently, for
every coalition S ⊆ N , the RSUs need to pay a cost for
coordination which is an increasing function of the coalition
size such as in (4). In fact, for the proposed cooperation
protocol one can easily see that, as the number of RSUs in
a coalition increases, coordinating the classes for maximizing
the revenue becomes more complex and consequently yields
additional costs.

2As previously stated, all V2V communications for content-sharing are
considered in a pairwise manner.

Consequently, given the revenue in (3) and the cost in (4),
the net value that any coalition S can receive is given by

v(S) = u(S) − c(S). (5)

This value function quantifies the effective revenue that a
coalition S of RSUs will receive given the gains and costs
from cooperation. One can easily see that, for a singleton
coalition, i.e., S = {i}, the utility function in (5) is reduced
to the non-cooperative utility function in (1).
For any coalition S ⊆ N , the utility in (5) represents the

amount of money received by this coalition, and, thus, it can
be arbitrarily apportioned among the members of S. Therefore,
the utility function in (5) is considered as a transferable
utility [19]. Consequently, we immediately have the following
property:
Property 1: The proposed RSUs cooperation problem is

modeled as a coalitional game with transferable utility (N , v)
where N is the set of RSUs and v is the value function given
by (5).
In the proposed coalitional game among RSUs, we denote

by φi(S) the payoff received by an RSU i ∈ S after dividing
the utility in (5) using any payoff division rule and we let
φ(S) be the vector of all payoffs inside coalition S. In this
context, the payoff vector φ(S) is said to be individually
rational if the RSUs in S can obtain a benefit in S that is
no less than their benefit when acting non-cooperatively, i.e.
φi(S) ≥ v({i}), ∀i ∈ S. In this paper, we adopt an individ-
ually rational egalitarian rule for payoff division whereby the
extra utility (benefit) is divided equally among the members
of the same coalition. In other words, the payoff φi(S) of any
i ∈ S is given by

φi(S) =
1
|S|

⎛
⎝v(S) −

∑
j∈S

v({j})
⎞
⎠ + v({i}) (6)

where v({i}) and v({j}) are the non-cooperative payoffs
of RSU i and RSU j. Note that, unlike equal fairness, the
egalitarian payoff division rule does not imply dividing the
entire utility equally but rather the extra benefits equally while
conserving individual rationality. Note that, other fairness rules
such as the Shapley value or the nucleolus [19]–[21] can also
be used.
By carefully inspecting the value function in (5), we can

state the following remark:
Remark 1: In the proposed (N , v) coalitional game, any

coalitional structure may form in the network and the grand
coalition, i.e., the coalition of all RSUs, is seldom beneficial
due to the increasing cooperation costs. Subsequently, the
proposed coalitional game among RSUs is classified as a
coalition formation game [21].
By carefully inspecting v(S) in (5) and through the cost

function in (4) it is clear that as the number of RSUs in a
coalition increases, the cost for cooperation increases, and,
thus, the gain from cooperation becomes limited by this
increasing cost. Consequently, although the grand coalition
might form under favorable conditions (e.g., when the cost of
cooperation is low relative to the benefits from cooperation), in
general, the final network structure is composed of a number of
independent disjoint coalitions of RSUs. Hence, the traditional
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concepts used for solving coalitional games, e.g., the core [19],
may not be applicable [21]. In brief, the proposed coalitional
game among RSUs is an (N , v) coalition formation game [21]
where the main goal is to devise an algorithm for allowing the
RSUs to form coalitions such as those shown in Fig. 1 while
taking into account both the gain and cost of cooperation.

IV. COALITION FORMATION ALGORITHM

In this section, first, we introduce some concepts from
coalition formation games, and, then, we devise an algorithm
for coalition formation among RSUs in a vehicular network.

A. Coalition Formation Concepts

As has been mentioned before, the proposed cooperation
model entails the formation of disjoint coalitions, and, hence,
the proposed game is classified as a coalition formation game.
In fact, coalition formation has been a topic of high interest
in game theory [22]–[26]. One key approach for forming
coalitions is to enable the players to join or leave a coalition
based on well-defined preferences. Such a preference-based
approach for coalition formation is the basis of many existing
coalition formation concepts such as the merge-and-split al-
gorithm [27] or hedonic games [24]–[26]. In this context, we
introduce some definitions from coalition formation games,
taken from [24].
Definition 2: A coalitional structure or a coalition parti-

tion is defined as the set Π = {S1, . . . , Sl} which partitions
the RSUs’ set N, i.e., ∀ k, Sk ⊆ N are disjoint coalitions such
that ∪l

k=1Sk = N (an example of a partition Π composed of
2 coalitions is shown in Fig. 1).
Definition 3: For any RSU i ∈ N , given a network

partition Π, we denote by SΠ(i), the coalition Sk ∈ Π, such
that i ∈ Sk.
For performing preference-based coalition formation in the

proposed game, each RSU must build preferences over its own
set of possible coalitions. In other words, based on which
coalition an RSU prefers to being a member of, the RSU
must be able to compare and order its potential coalitions. For
evaluating these preferences of the RSUs over the coalitions,
we use the concept of a preference relation or order as follows
[24]:
Definition 4: For any RSU i ∈ N , a preference relation

or order 	i is defined as a complete, reflexive, and transitive
binary relation over the set of all coalitions that RSU i can
possibly form, i.e., the set {Sk ⊆ N : i ∈ Sk}.
Hence, for any given RSU i ∈ N , S1 	i S2, implies

that RSU i prefers being a member of coalition S1 ⊆ N
with i ∈ S1 over coalition S2 ⊆ N with i ∈ S2, or
at least, i prefers both coalitions equally. The asymmetric
counterpart of 	i, denoted by 
i, i.e., S1 
i S2, implies
that RSU i strictly prefers being a member of S1 over S2.
Every coalition formation application can have a different
order for quantifying the players’ preferences. This order can
be a function of several parameters, such as the payoffs that
the players receive from each coalition, the approval of the
coalition members, and so on. In this coalition formation
game, we propose the following preference relation for any
RSU i ∈ N :

S1 	i S2 ⇔ ri(S1) ≥ ri(S2) (7)

where S1, S2 ⊆ N , are any two coalitions containing RSU i,
i.e., i ∈ S1 and i ∈ S2 and ri is a preference function defined
for any RSU i ∈ N and any coalition S such that i ∈ S as
follows:

ri(S) =

⎧⎪⎨
⎪⎩

φi(S), if φj(S) ≥ φj(S \ {i}), ∀j ∈ S \ {i}
& S /∈ h(i) or (|S| = 1)

−∞, otherwise
(8)

where φi(S) is the payoff received by RSU i in coalition S as
per the egalitarian fair rule given by (6) and h(i) is a history set
where RSU i stores the identity of the coalitions that it visited
and then left in the past. Note that h(i) is only applicable to
coalitions with size larger than 1 since it is natural to consider
that, at any time, any RSU can always revert to acting non-
cooperatively.
Having clearly defined the required coalition formation

concepts, the next step is to provide a distributed algorithm,
based on the defined preferences, for forming the coalitions.

B. Distributed Coalition Formation Algorithm

For constructing a coalition formation process, we introduce
an algorithm that allows the RSUs to take distributed decisions
for selecting which coalitions to join at any point in time.
In this regard, we propose the following rule for coalition
formation:
Definition 5: Switch Operation - Given a partition Π =

{S1, . . . , Sl} of the set N , any RSU i ∈ N decides to leave its
current coalition SΠ(i) = Sm, for some m ∈ {1, . . . , l} and
join another coalition Sk ∈ Π∪{∅}, Sk �= SΠ(i), if and only
if Sk∪{i} 
i SΠ(i). Hence, {Sm, Sk} → {Sm\{i}, Sk∪{i}}.
Hence, for every single switch operation made by an RSU

i, a current partition Π of N is modified into a new partition
Π′ such that Π′ = (Π \ {Sm, Sk}) ∪ {Sm \ {i}, Sk ∪ {i}}.
Therefore, for every partition Π, the switch operation consti-
tutes a mechanism using which any RSU can leave its current
coalition SΠ(i), and join another coalition Sk ∈ Π, given that
the new coalition Sk ∪ {i} is strictly preferred over SΠ(i)
through the preference relation defined in (8). In fact, by
carefully inspecting (8), we note that, an RSU i would perform
a switch operation by leaving SΠ(i) and joining Sk ∈ Π if
this RSU can strictly improve its payoff by joining the new
coalition Sk∪{i} without decreasing any of the payoffs of the
RSUs in coalition Sk and given that RSU i did not join and
leave Sk ∪ {i} in the past. Hence, the switch operation using
(8) is a mechanism through which an RSU decides to join
a new coalition given the consent of all the members of the
coalition. Furthermore, we consider that, whenever an RSU
decides to switch from one coalition to another, it updates its
history set h(i). Hence, given a partition Π, whenever an RSU
i decides to leave coalition Sl ∈ Π to join another coalition,
coalition Sl is stored by RSU i in its history set h(i).
Using the switch operation, we construct a coalition forma-

tion algorithm composed of three main stages: Neighbor dis-
covery, distributed coalition formation, and cooperative V2R
communication. In the first stage, each RSU uses a neighbor
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discovery algorithm in order to identify potential candidate
RSUs (or coalitions) for cooperation. For discovering their
neighbors, the RSUs can utilize several well-known neighbor
discovery algorithms (e.g., those used in ad hoc routing
discovery [28] or wireless networks [29]). The outcome of
the neighbor discovery stage is that every RSU becomes aware
of its neighbors as well as of the current network structure.
Following neighbor discovery, the RSUs can interact with each
other for performing cooperation using coalition formation.
Thus, the second stage of the algorithm is the coalition for-
mation stage whereby, all the RSUs investigate the possibility
of performing a switch operation. In this context, every RSU
investigates its top preferred coalition and decides to perform
a switch operation, if possible, through (8). We assume that
the order in which the RSUs make their switch operations is
random. For any RSU, a switch operation is easily performed
as the RSU can change its coalition membership by leaving
its current coalition and joining the new coalition, given the
approval of the RSUs in the new coalition as per (8). The
convergence of the proposed coalition formation algorithm
during this second stage is guaranteed as follows:
Theorem 1: Starting from any initial coalitional structure

Πinitial, the coalition formation stage of the proposed algorithm
maps to a sequence of switch operations which will always
converge to a final network partition Πf composed of a
number of disjoint coalitions.

Proof: For the purpose of this proof, we denote by Πk
nk

the partition formed during the turn k of any RSU i ∈ N
after the occurrence of nk switch operations (the index nk

denotes the number of switch operations performed by the
RSUs that made their coalition decisions up to the turn of
RSU i). Beginning with any initial starting partition Πinitial =
Π1

0, the coalition formation phase of the proposed algorithm
can be easily mapped to a sequence of switch operations. As
per definition 5, every switch operation transforms the current
partition Π into another partition Π′, hence, the sequence of
switch operations yields the following transformations (as an
illustrative example):

Π1
0 = Π2

0 → Π3
1 → · · · → ΠT

nT
(9)

where the operator → indicates the occurrence of a switch
operation and T indicates the total number of turns taken by
the RSUs. In other words, Πk

nk
→ Πk+1

nk+1
, means that during

turn number k, an RSU i made a single switch operation which
yielded a new partition Πk+1

nk+1
at turn k + 1. Note that, in (9),

the first element Π1
0 = Π2

0 implies that, at the turn of RSU
1, no switch operations occur (indicated by subscript 0) and,
thus, the second partition Π2

0 is still equal to the first partition
Π1

0. By inspecting the preference relation defined in (8), it
is easily seen that every single switch operation leads to a
partition that has not yet been visited (new partition) or yields
a previously visited partition with a non-cooperative RSU (a
coalition of size 1).
In the case where every single switch operation leads to a

previously unvisited coalition, and due to the well known fact
that the number of partitions of a set is finite and given by
the Bell number [22], the number of transformations in (9)
is finite, and hence the sequence in (9) will always terminate
and converge to a final partition Πf = ΠT

nT
after T turns.

In the case where a previously visited partition with a non-
cooperative RSU is visited, starting from this partition, at a
certain point in time, the non-cooperative RSU must either
join a new coalition and, thus, as per (8) yield an unvisited
partition or decide to remain non-cooperative. Subsequently,
the number of re-visited partitions will be limited, and, thus,
in all cases, the coalition formation stage of the proposed algo-
rithm will converge to a final network partition Πf composed
of a number of disjoint RSUs coalitions, which completes the
proof.
The stability of the final partition Πf resulting from the

convergence of the proposed algorithm can be studied using
the following stability concept [24]:
Definition 6: A partition Π = {S1, . . . , Sl} is Nash-stable

if ∀i ∈ N , SΠ(i) 	i Sk ∪ {i} for all Sk ∈ Π ∪ {∅}.
This definition implies that, any coalition partition Π where

no RSU has an incentive to move from its current coalition to
another coalition in Π or to deviate and act alone is considered
as a Nash-stable partition. Moreover, a Nash-stable partition
Π implies that there does not exist any coalition Sk ∈ N such
that an RSU i strictly prefers, as per (8), to be part of Sk over
being part of its current coalition (given that the RSUs in Sk

do not get hurt by forming Sk ∪ {i}). This is the concept of
individual stability, which is formally defined as follows [24]:
Definition 7: A partition Π = {S1, . . . , Sl} is individually

stable if there do not exist i ∈ N and a coalition Sk ∈ Π∪{∅}
such that Sk∪{i} 
i SΠ(i) and Sk∪{i} 	j Sk for all j ∈ Sk.
As already noted, a Nash-stable partition is individually stable
[24] and, thus, we have the following:
Proposition 1: Any partition Πf resulting from the coali-

tion formation phase of the proposed algorithm is Nash-stable,
and, hence, individually stable.

Proof: Assume that the partition Πf resulting from the
proposed algorithm is not Nash-stable. Consequently, there
exists an RSU i ∈ N and a coalition Sk ∈ Πf such that
Sk ∪ {i} 
i SΠf

(i), hence, RSU i can perform a switch
operation which contradicts with the fact that Πf is the result
of the convergence of the proposed algorithm (Theorem 1).
Consequently, any partition Πf resulting from the coalition
formation phase of the proposed algorithm is Nash-stable,
and, hence, by [24], this resulting partition is also individually
stable.
Following the formation of the coalitions and the con-

vergence of the coalition formation phase to a Nash-stable
partition, the last phase of the algorithm entails the actual co-
operative V2R communication within every formed coalition
as explained in Sections II and III. The proposed algorithm is
summarized in Table I.

C. Adaptation to Environmental Changes and Implementation

Using the algorithm proposed in Table I, the RSUs can adapt
the network structure to environmental changes. One important
environmental change that can occur in V2R networks is a
change in the traffic passing by every RSU. Such a change
automatically modifies the meeting possibilities among the ve-
hicles traveling between the RSUs and, thus, there is a need for
the network to re-organize. For this purpose, the three stages of
the algorithm shown in Table I are repeated periodically over
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TABLE I
THE PROPOSED COALITION FORMATION ALGORITHM FOR ROADSIDE

UNITS (RSUS) COOPERATION.

Starting Network

The RSUs in the network are organized into an initial partition

Πinitial = {S1, . . . , Sk}. At the beginning Πinitial = N .
Coalition Formation Algorithm with Three Stages
Stage I - Neighbor Discovery:
Each RSU discovers neighboring RSUs as well as the current
network structure Πinitial.
Stage II - Coalition Formation:
In this stage, the RSUs engage in coalition formation as follows:
repeat
For every RSU i ∈ N , given any current partition Πcurrent (in

the first round Πcurrent = Πinitial).
a) RSU i investigates possible switch operations using the
preferences given by (8)
b) If possible, RSU i performs a switch operation as follows:
b.1) RSU i updates its history h(i) by adding coalition
SΠcurrent(i), before leaving it.
b.2) RSU i leaves its current coalition SΠcurrent (i).
b.3) RSU i joins the new coalition that improves its payoff.

until convergence to a final Nash-stable partition Πf .
Stage III - Cooperative V2R Communication
a) The current network is partitioned using Πf.
b) The coalitions of RSUs operate using the cooperative protocol
discussed in Section II.

Adaptation to environmental changes (periodic process)
In the presence of environmental changes, such as a change in
the vehicle traffic, every period of time Ψ, the three stages of the
algorithm are repeated to allow the RSUs to self-organize and
adapt the network structure to these environmental changes.

time to adapt to any changes that have occurred in the envi-
ronment. As per Theorem 1 and Proposition 1, regardless of
the starting position, the players will always self-organize into
a Nash-stable partition, even after any environmental change.
In brief, in a changing environment, the proposed algorithm
in Table I is repeated every period of time Ψ. This period of
time is chosen depending on how rapidly the environment is
changing, e.g., for rapidly changing environmentsΨ is chosen
to have a small value while for static environments it can have
a large value. Note that, every Ψ, the history set h(i) for all
RSUs i ∈ N is reset.

To implement the proposed algorithm, a distributed ap-
proach can be used. For instance, every switch operation can
be taken by the RSUs individually without relying on any
centralized entity. For discovering their neighbors, the RSUs
can utilize well-known algorithms such as those discussed in
[28] or [29]. Further, the RSUs are required to evaluate their
potential payoff as per (6) in order to make an accurate switch
operation. For evaluating this payoff, the RSUs can commu-
nicate over the underlying network infrastructure which, in
general, can enable a reliable communication [1]. By doing
so, the RSUs can exchange the needed information such as
their estimates on the average number of vehicles passing in
each direction, their location as well as the permutation of
classes that can maximize the utility in (5). Although at first
glance, finding the permutation of classes that maximizes (5)
seem to be complex, this complexity is reduced due to the fact
that both the number of data classes in the network and the
sizes of the formed coalition sizes (due to cooperation cost)
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Fig. 2. A snapshot of the coalitional structure Πf = {S1, S2, S3} resulting
from the proposed algorithm for a network with N = 10 RSUs, δ = 0.8, and
different number of vehicles initiating at every RSU (in this figure, the number
of vehicles starting at RSU i is denoted by Ki and assumed the same for all
directions inside the coalition). For each coalition S, the utility-maximizing
data classes permutation tuple B∗

S is shown.

are generally small. Further, given a present partition Π, for
every RSU, the computational complexity of finding its next
coalition, i.e., performing a switch operation, is easily seen to
be O(|Π|), and in the worst case (i.e., when all the players are
non-cooperative), |Π| = N . Finally, in changing environments,
as the algorithm is repeated periodically, the complexity of the
coalition formation algorithm is comparable to the one in the
static environment, but with more runs of the algorithm.

V. SIMULATION RESULTS AND DISCUSSIONS

We set up the following network for simulations: We
consider a 3 km×3 km square area within which the RSUs
are randomly deployed. The total number of data classes in
the network is set to L = 3 classes with the corresponding
set being C = {c1, c2, c3} and the weights given by wc1 =
0.9, wc2 = 0.8, and wc3 = 0.7. The total number of vehicles
Kij initiating from any RSU i ∈ N in the direction of any
other RSU j ∈ N is considered equal at all directions, i.e.,
Kij = Ki ∀j ∈ N s.t. j �= i. Then, this number of vehicles
Ki for an RSU i is selected from a uniform distribution over
the integers such that Ki ≤ 25, ∀i ∈ N . The average number
of chunks of data downloaded by any vehicle k from any
RSU i ∈ N is set to Pk,i = 10 ∀i, k. The price per effective
data unit is set to β = 1 while the price factor for the cost
is set to α = 10. Unless stated otherwise, the fraction of
vehicles that can meet when the RSUs are distant of 1 km is
set to δ = 0.8. All of the statistical results presented in this
section are averaged over the random positions of the RSUs
as well as the random traffic pattern (random average number
of vehicles Ki initiating from any RSU i ∈ N within the
above-mentioned range).
In Fig. 2, we show a snapshot of the network structure

Πf = {S1, S2, S3} resulting from the proposed algorithm
for a vehicular network with N = 10 randomly deployed
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Fig. 3. Average payoff per RSU yielded by the proposed algorithm, the
non-cooperative scheme, and the optimal partition (centralized approach) as
a function of the number of RSUs N for networks with L = 3 data classes
and δ = 0.8.

RSUs. Fig. 2 shows 3 different coalitions which are formed
among the different RSUs as a result of the proposed coalition
formation algorithm. In this figure, for every RSU i belonging
to a coalition Sk ∈ Πf , we show the average total number
of vehicles Ki starting at i. In addition, for every coalition
Sk ∈ Πf , we show the corresponding utility-maximizing tuple
B∗

Sk
of data classes obtained through coordination among

the cooperating RSUs. First, we notice that that all three
formed coalitions encompass groups of nearby RSUs with
comparable vehicle traffic. This corroborates the natural result
that RSUs that have an almost similar traffic and that are
closely located are more apt to form a coalition. Further,
the partition in Fig. 2 is Nash-stable since no RSU has an
incentive to switch its current coalition. For example, RSU 9
has a payoff of φ9(S1) = 553.5 when being part of coalition
S1 = {3, 5, 9, 10}, and by switching to act non-cooperatively,
this payoff drops to φ9({9}) = 486. Similarly, if RSU 9 wants
to switch from S1 to join with coalition S3 = {1, 6}, its payoff
drops to φ9({1, 6, 9}) = 281.4.
Finally, although by joining with coalition S2 =

{2, 4, 7, 8} RSU 9 can significantly improve its utility to
φ9({2, 4, 7, 8, 9}) = 1604.2, the members of S2 do not
agree on the joining of RSU 9 since this would decrease the
payoffs of RSUs 2, 4, and 7 which drop from φ2(S2) =
2037.3, φ4(S2) = 2118.3, and φ7(S2) = 1956.3 to
φ2({2, 4, 7, 8, 9}) = 1597.2, φ4({2, 4, 7, 8, 9}) = 1599.2,
and φ7({2, 4, 7, 8, 9}) = 1602.1, respectively. This drop is a
consequence of the cost of cooperation, the distance of RSU 9
to the members of coalition S2, as well as the low possibility
of V2V content-sharing on the links between RSU 9 and the
members of S2 (due to the relatively lower average number
of vehicles at RSU 9 compared to that at the other members
of S2). In a nutshell, Fig. 2 provides an insight on how the
RSUs can self-organize using the proposed coalition formation
algorithm.

In Fig. 3, we show the average payoff (averaged over all
RSU positions and all vehicle traffic patterns) achieved per
RSU for a network with L = 3 data classes and δ = 0.8
as the number of RSUs in the network, N , increases. In this
figure, we compare the performance of the proposed algorithm
to that of the non-cooperative case as well as the optimal
partition, i.e., the partition that maximizes the average payoff
per RSU, found by a centralized entity through exhaustive
search. Fig. 3 shows that, as the number of RSUs N increases,
the performance of the proposed scheme, the non-cooperative
scheme, and the optimal partition, increases. The increase
in the performance of the non-cooperative scheme with the
network size is solely due to the existence of additional
data traffic yielded by the additional RSUs. For the proposed
algorithm and the optimal partition, the increase in the average
payoff per RSU with the network size N is also a result of the
increased possibility of finding better cooperating partners as
the network grows. At all network sizes, the proposed coali-
tion formation algorithm maintains a performance advantage
compared to the non-cooperative case. This advantage ranges
between 20.5% and 33.2% of improvement, respectively, at
N = 15 and N = 2 relative to the average non-cooperative
payoff.
Moreover, compared to the optimal solution, clearly the

proposed coalition formation algorithm achieves a highly com-
parable performance with a performance gap not exceeding
2.3% with respect to the optimal solution at N = 10 RSUs.
This shows that, by using the proposed distributed coalition
formation algorithm, the RSUs can achieve a performance
that is very close to optimal. Note that, for more than
10 RSUs, finding the optimal partition by exhaustive search is
mathematically and computationally intractable. Finally, Fig. 3
also shows that, as more RSUs are deployed in the network,
more traffic is served and, thus, the average payoff per RSU
increases significantly for all three schemes. Fig. 3 shows
that adding 5 RSUs increases the average payoff per RSU
of around 400% to 500% for both the non-cooperative and
the cooperative cases which provides incentives for deploying
additional RSUs and, thus, generating more revenues per RSU.
In Fig. 4, we show the average and average maximum

coalition size (averaged over the random positions of the
RSUs and the random vehicle traffic pattern) resulting from
the proposed coalition formation algorithm as the number of
RSUs, N , increases, for a network with L = 3 data classes
and δ = 0.8. Fig. 4 shows that both the average and the
average maximum coalition size increase with the number of
RSUs. This is mainly due to the fact that, as N increases,
the number of candidate cooperating partners increases, thus,
increasing the average size of the formed coalitions. Fig. 4 also
shows that the formed coalitions have a moderate to large size,
with the average and average maximum coalition size ranging,
respectively, from around 1.9 (for both) at N = 2 to around
5.25 and 9.9 at N = 15. Therefore, we can conclude that,
in general, after coalition formation, the resulting network of
RSUs is mainly composed of a small number of relatively
large coalitions rather than a large number of small coalitions.
In Fig. 5, we show the average payoff achieved per RSU

for a network with N = 10 RSUs and L = 3 data classes
as the parameter δ varies. The parameter δ, as given in (2),
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Fig. 4. Average and average maximum coalition size for the networks yielded
by the proposed coalition formation algorithm as a function of the number of
RSUs N for networks with L = 3 data classes and δ = 0.8.
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Fig. 5. Average payoff per RSU yielded by the proposed algorithm, the
optimal scheme, and the non-cooperative scheme as a function of the fraction
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two RSUs distant 1 km for a network with N = 10 RSUs and L = 3 data
classes.

represents the fraction of vehicles that can meet and engage
in V2V content sharing between any two RSUs distant of
1 km. Fig. 5 shows that, as δ increases, the performance of the
proposed scheme as well as of the optimal solution increase
while that of the non-cooperative scheme remains constant at
all δ. In the non-cooperative scheme, due to the fact that the
RSUs are unaware of the underlying V2V communications
network, the performance of the non-cooperative approach is
not affected by the variations in δ. In contrast, for the proposed
coalition formation algorithm and the optimal solution, as δ
increases, it becomes more beneficial for the RSUs to exploit
the V2V communications network, and, thus, the performance
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Fig. 6. Average and average maximum coalition size for the networks yielded
by the proposed coalition formation algorithm as a function of the fraction
δ of vehicles that can meet and engage in V2V content-sharing between any
two RSUs distant of 1 km for a network with N = 10 RSUs and L = 3 data
classes.

gains in terms of average payoff per RSU increases with δ.
In this context, the proposed coalition formation algorithm
presents a performance advantage over the non-cooperative
scheme at all δ. This advantage is increasing with δ and it
reaches up to around 25% of improvement relative to the non-
cooperative approach at δ = 1. Moreover, Fig. 5 shows that,
at all δ the proposed coalition formation algorithm yields a
near optimal performance as the performance gap with respect
to the optimal solution does not exceed 2.8% (achieved at
δ = 1). Finally, as can be seen in Fig. 5, at δ = 0, there
is practically no possibility that V2V communications take
place, and, hence, at this value the coalition formation scheme
reduces to a non-cooperative approach.
In Fig. 6, we show the average and average maximum

coalition size resulting from the proposed coalition formation
algorithm for a network with N = 10 RSUs and L = 3 data
classes as the parameter δ varies. Fig. 6 shows that both the
average and average maximum coalition size increase with δ.
This is mainly due to the fact that, as δ increases, the amount
of V2V data exchange increases and, hence, cooperation
becomes highly desirable. From Fig. 4, we note that, when
δ ≤ 0.4, the network structure tends towards a partition
composed of large number of small coalitions with the average
and average maximum coalition sizes not exceeding 3 and 5.6,
respectively, at δ = 0.4. However, as δ increases beyond 0.4,
the emergence of large coalitions becomes more likely as the
average and average coalition size reach up to 4.9 and 7.8,
respectively, at δ = 1.
In Fig. 7, we show the average total number of switch

operations (averaged over the random positions of the RSUs
and the random vehicle traffic pattern) that occur prior to
the convergence of the proposed algorithm as the number of
RSUs, N , increases, for a network with L = 3 data classes
and for the cases of δ = 0.4 and δ = 0.8. Fig. 7 shows
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Fig. 7. Average total number of switch operations yielded by the proposed
coalition formation algorithm prior to convergence as a function of the number
of RSUs N for networks with L = 3 data classes and for the cases of δ = 0.4
and δ = 0.8.

that, for both δ = 0.4 and δ = 0.8, the average total number
of switch operations increases with the network size. This is
mainly due to the fact that, as N increases, the possibilities for
cooperation increase, yielding an increased number of switch
operations. In this figure, we observe that the total number of
switch operations required for the convergence of the coalition
formation algorithm varies from 0.6 and 0.87 at N = 2 to
around 27.6 and 43.2 at N = 15 RSUs for the cases of
δ = 0.4 and δ = 0.8, respectively. This result implies that
for a network of N = 15 RSUs with δ = 0.8 an average of 3
switch operations per RSU are required before convergence,
which demonstrates that the convergence time of the proposed
algorithm is quite reasonable. Finally, in Fig. 7, we note
that as the possibilities of V2V content-sharing decreases,
i.e., as δ decreases, the total number of switch operations
decreases. For instance, at all network sizes, the total number
of switch operations required for convergence at δ = 0.4 is
approximately two-third of that required for the convergence
of the algorithm at δ = 0.8.
Fig. 8 shows how the structure of a vehicular network with

N = 10 RSUs evolves and self-adapts over time over a period
of 5 minutes, while the average traffic Ki present at each
RSU i ∈ N varies every 1 minute. The proposed coalition
algorithm is repeated periodically by the RSUs every Ψ = 1
minute, in order to provide self-adaptation to the change in
the traffic pattern. The network starts with a non-cooperative
structure made up of 10 independent RSUs. In the first step,
as shown in Fig. 8 at t = 0, the network self-organizes into
3 coalitions through a total of around 17 switch operations.
As time evolves, the RSUs perform various switch operations
as the network topology changes with the emergence of new
coalitions and the departure of other coalitions. For example,
after 1 minute, the RSUs perform a total of 7 switch operations
as the network structure changes from a partition composed of
3 coalitions at t = 0 to a partition composed of 4 coalitions at
t = 1. Between t = 2 minutes and t = 3 minutes the network
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Fig. 8. Evolution of the network structure over time as the vehicle traffic
pattern (the average number of vehicles Ki served by each RSU) varies over
a period of 5 minutes for a network with N = 10 RSUs.

structure remains unchanged as no switch operations occur.
Finally, once all 5 minutes have elapsed the network structure
is made up of 2 coalitions after a total of 41 switch operations
have occurred since t = 0.

VI. CONCLUSION

We have introduced a novel model for distributed coopera-
tion among the roadside units in a vehicular network. In the
proposed model, any group of cooperating roadside units can
coordinate the classes of data they transmit to the vehicles,
and, thus, improve the diversity of the data circulating in the
network. In addition, using the proposed cooperation model,
any group of cooperating roadside units can improve its rev-
enue by exploiting the underlying vehicle-to-vehicle content-
sharing network. The proposed cooperation model for roadside
units has been formulated as a coalition formation game with
transferable utility and a coalition formation algorithm has
been proposed. Using the proposed coalition formation algo-
rithm, the roadside units can take individual decisions to join
or leave a coalition while maximizing their payoffs. The payoff
accounts for the gains from cooperation, in terms of increased
revenues as well as the cost of coordination. We have studied
the properties and characteristics of the proposed model and
showed that the proposed coalition formation algorithm always
converges to a Nash-stable partition. Further, by repeating
the proposed coalition formation algorithm periodically, the
roadside units can take autonomous decisions for adapting
the network structure to environmental changes such as a
change in the vehicle traffic. Simulation results show how the
proposed algorithm allows the roadside units to self-organize
into independent coalitions, while improving the performance,
in terms of the average payoff per roadside unit between
20.5% and 33.2% (depending on different scenarios) relative
to the non-cooperative scheme.
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