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Cooperation in Wireless Networks with
Unreliable Channels

Wenjing Wang, Mainak Chatterjee, and Kevin Kwiat

Abstract—In a distributed wireless system, multiple network
nodes behave cooperatively towards a common goal. An impor-
tant challenge in such a scenario is to attain mutual cooperation.
This paper provides a non-cooperative game theoretic solution
to enforce cooperation in wireless networks in the presence of
channel noise. We focus on one-hop information exchange and
model the packet forwarding process as a hidden action game
with imperfect private monitoring. We propose a state machine
based strategy to reach Nash Equilibrium. The equilibrium is
proved to be a sequential one with carefully designed system
parameters. Furthermore, we extend our discussion to a gen-
eral wireless network scenario by considering how cooperation
can prevail over collusion using evolutionary game theory.
The simulation results are provided to back our analysis. In
particular, network throughput performance is measured with
respect to parameters like channel loss probability, route hop
count, and mobility. Results suggest that the performance due
to our proposed strategy is in close agreement with that of
unconditionally cooperative nodes. Simulation results also reveal
how the convergence of cooperation enforcement is affected by
initial population share and channel unreliability.

Index Terms—Wireless networks, cooperation enforcement,
evolutionary game theory, sequential equilibrium, imperfect
observation, collusion resistance.

I. INTRODUCTION

IN a distributed wireless system where multiple network
entities (also called nodes) work towards individual or

common goals, cooperative behavior among the nodes (such as
controlling the transmit power level, reducing interference for
each other, revealing private information, adhering to network
policies) is highly desired for increasing system capacity. For
example, when data transfer is required between any pair of
non-adjacent nodes, the node pair relies on the nodes between
them to relay the data packets. However, this assumption may
be too strong in some scenarios when nodes do not belong to
the same authority or work towards different goals [2], [3],
[22], [27]. As a result, nodes may prefer not to participate
in packet forwarding, since the notion of cooperation might
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not be rational to them. Therefore, in order to ensure proper
functioning of the network, it is important to stimulate or
enforce cooperation among the nodes.

Over the past years, mechanisms have been devised that
either stimulate nodes to forward each others’ packets [7],
[9], [11] or punish nodes for misbehaving [4], [8], [21], [27].
Majority of the proposed methods can be broadly categorized
into two types: incentive-based [10], [12], [28] and reputation-
based [15], [23], [24]. Most incentive-based protocols assume
the network with rational nodes/agents and adopt the concept
of virtual currency (e.g., “nuglets”) [9] which is a method to
reward nodes participating in packet forwarding. It has been
well established that pricing schemes (in terms of reward and
penalty) [3], [12] and security of payment systems [10], [11]
are closely associated with the incentive-based approaches. On
the contrary, in a reputation-based system, a node’s behavior
is monitored and measured by its neighbors. Based on the
observed past behaviors, a node receives a certain level of
service or gets isolated for being non-cooperative [8], [21].
An example of reputation-based scheme is CORE [23], where
each node maintains a reputation table for the other nodes.
The reputation value is updated based on the node’s own
observations and the information provided by the other nodes.

Meanwhile, there have been some interesting developments
that use game theory to analyze how cooperation can be
achieved [13], [24], [28], [32]. In [13], Félegyházi et al. for-
mally define the packet forwarding game in ad hoc networks
and derive the conditions under which cooperation yields Nash
Equilibrium. Michiardi et al. apply game theory in [24] to
analyze several strategies in the repeated prisoner’s dilemma.
They also show that in order to foster coalition among cooper-
ative nodes, enough incentives should be granted. Zhong et al.
[32] show that there is no dominant strategy in a forwarding
subgame and cryptographic techniques can be employed for
the required tamper-proof hardware support. A more general
framework on cooperation in ad hoc networks is presented in
[28], where Srinivasan et al. focus on the energy efficiency
through cooperation.

However, the aforementioned efforts are not sufficient to
completely understand and model cooperation in wireless net-
work in the presence of noise. The noisy nature of the wireless
channels makes the analysis very challenging. More recent
work [15], [16], [25], [29], [31] confirm that the effect of
noise makes the observation imperfect. In [15], Jaramillo et al.
propose a distributed reputation monitoring based strategy to
enforce cooperation when the channel is lossy. Their strategy
is proved to be subgame perfect even if the channel estimation
is not accurate. Non-cooperative game theory has been used
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to enforce cooperation when channel collision exists [25],
[29]. In [31], statistical methods are used to filter noise from
observation so that attacks can be identified. Ji et al. [16]
calculate the belief of nodes on others’ actions and propose a
belief-based multi-node multihop packet forwarding scheme.
Li et al. [20] further generalize noise and imperfect monitoring
as hidden information and hidden action games, and study
truthful routing issues from a mechanism design perspective.
Related investigations are also shown by Feldman et al. in
[14].

The research presented in this paper addresses the problem
of cooperation enforcement with noisy channel. Although
our research is inspired by [15] and [16], our modeling
and methodology are quite different from existing work and
should not be considered as a simple variant. In [15], the
implicit assumptions are that the channels and environment
are identical around the receiver and the observer, so that the
sender can observe the forwarding actions directly. However,
in our model, we do not assume the channels to be identical.
[16] proposes a viable way to achieve equilibrium based on
beliefs. In their approach, a complex belief model is employed
which requires the nodes to calculate their beliefs about what
actions the opponents have taken. However, as the game
evolves, the computation complexity of updating beliefs is
high. Furthermore, the difficulties in hidden action game with
imperfect private monitoring games are generally two-fold.
First, when the noisy channel makes action history unknown
to the public, the games do not possess the recursive structure
on the equilibrium [1]. Second, players (nodes) are not sure
about what the opponents are going to do because they cannot
perfectly monitor their actions. In that case, a player must take
the best strategy based on her belief about her opponents’
actions at every move, which is the essence of the strategies
proposed in [16]. The first difficulty implies that the modeling
and analysis of node interactions should apply the theory
of dynamic games, while the second difficulty demands an
effective and efficient approach to achieve equilibrium. This
research is motivated by the aforementioned challenges, and
we attempt to find a less complex alternative approach to
enforce cooperation in unreliable wireless networks.

Our main focus in this research stems from the state-of-
the-art advances in game theory on repeated games under
private monitoring and strategies [6], [17], [18]. We focus on
one-hop information exchange in a wireless network setting
and model the non-cooperative packet forwarding game in
the presence of noise. We show that although nodes’ actions
are hidden due to the channel, they can nevertheless monitor
their own payoffs. Based on the private observation of their
payoffs, we construct a forwarding approach using a two-
state machine. We demonstrate that careful design of the
state transition parameters achieves sequential equilibria that
enforces cooperation. Furthermore, to address how to enforce
cooperation when collusion exists, we focus on the collusion
resistance using both repeated and evolutionary games. Our
findings indicate that a subgame perfect cooperation enforce-
ment strategy ensures cooperation as a prevailing action if the
strategy is evolutionary stable or the initial non-cooperative
population is bounded.

The main contributions in this paper can be summarized as
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Fig. 1. Two player packet forwarding game model.

follows.

∙ We model the packet forwarding process with channel
noise as a hidden action game with imperfect monitoring
and propose a strategy profile for the game. The strategy
is shown to give a sequential equilibrium solution. Exten-
sive simulations show that the cooperation enforcement
strategy is more efficient (Pareto superior) over non-
cooperative ones.

∙ We adopt evolutionary game theory in capturing the
population dynamics. Analysis indicates that if nodes
are patient enough and value future payoffs, collusion
resistance and cooperation enforcement are equivalent.

The rest of the paper is organized as follows. In Section II,
we introduce the packet forwarding game considering noise.
In Section III, we explain how to build a strategy profile with
a two-state machine and analyze its equilibrium properties.
In Section IV, we use evolutionary game theory to show
how cooperation can be enforced despite collusion. Section
V provides the simulation model and results to illustrate the
properties of the proposed strategies as well as our analysis.
The last section concludes the paper.

II. THE PACKET FORWARDING GAME UNDER NOISE

We begin our analysis with a review of the classical two-
player packet forwarding problem [13], [15]. As shown in
Figure 1, we consider two data sessions: (i) 𝐴𝑆 to 𝐴𝐷 through
𝐵𝑆 and (ii) 𝐵𝑆 to 𝐵𝐷 through 𝐴𝑆 . If the channel is perfect
(loss free), based on the actions 𝐴𝑆 and 𝐵𝑆 take, they will
obtain different payoffs as listed in Table I. The entries in the
matrix, i.e., R, S, T, P, not only determine the payoffs players
can obtain, but also indicate the type of the game. For example,
the well-known Prisoner’s Dilemma [26] characterizes the
scenario of packet forwarding when 𝑇 > 𝑅 > 𝑃 > 𝑆. It
is noted that, depending on how the system is configured, the
values in the matrix might be different. In this research, instead
of using a specific payoff matrix, we assume the matrix has
a general form as shown in Table I. Later, we will show how
the values in the matrix affect the equilibrium properties of
our strategy. Given the payoff matrix, it is clear that for an
action a = (𝑎𝐴𝑆 , 𝑎𝐵𝑆 ) = (𝐹𝑜𝑟𝑤𝑎𝑟𝑑,𝐷𝑖𝑠𝑐𝑎𝑟𝑑), the payoff
vector would definitely be u = (𝑢𝐴𝑆 , 𝑢𝐵𝑆 ) = (𝑆, 𝑇 ).

However, when we bring in the channel loss, even if both
nodes take the same action as above, the payoff vector is not
likely to remain the same. For node 𝐴𝑆 , it forwards 𝐵𝑆’s
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TABLE I
PAYOFF MATRIX OF TWO PLAYER PACKET FORWARDING GAME.

R=REWARD, S=SUCKER, T=TEMPTATION, P=PENALTY.

Node 𝐴𝑆

Forward Discard

Node 𝐵𝑆
Forward 𝑅 𝑅 𝑆 𝑇
Discard 𝑇 𝑆 𝑃 𝑃

TABLE II
PAYOFF PROBABILITIES FOR GIVEN ACTION PROFILES.

F=FORWARD, D=DISCARD.

Node 𝑖’s payoffs
R S T P

Actions

(F, F) (1− 𝑝𝑒)2 𝑝𝑒(1 − 𝑝𝑒) 𝑝𝑒(1− 𝑝𝑒) 𝑝2𝑒
(D, F) 0 0 1− 𝑝𝑒 𝑝𝑒
(F, D) 0 1− 𝑝𝑒 0 𝑝𝑒
(D, D) 0 0 0 1

packet to 𝐵𝐷, but the forwarding action might fail due to
the channel noise, and 𝐵𝐷 does not receive the packet. Since
𝐵𝑆’s payoff is determined by whether 𝐵𝐷 receives the packet,
from node 𝐵𝑆’s perspective, 𝐴𝑆 is playing Discard even
though its action was Forward. Thus, the payoff vector now
is u = (𝑃, 𝑃 ). Nonetheless, node 𝐵𝑆 cannot directly observe
𝐴𝑆’s action. This is because what 𝐵𝑆 can observe relies only
on the channel between it and 𝐴𝑆 and this channel is different
from that between 𝐴𝑆 and 𝐵𝐷 due to interference. Also, we
do not assume that 𝐵𝐷 can, through some mechanism, inform
𝐵𝑆 about whether the packet is received or not. Hence, what
the nodes can do is to monitor their own payoffs (realized
payoff ), and indirectly, form a belief on what others have
done. Based on the same payoff matrix in Table I, if the
noise is presented as a channel loss probability 𝑝𝑒,1 we
can calculate the probabilities associated with actions and
payoffs. In Table II, we list the probabilities as node 𝑖 plays
the first action and its opponent plays the second action in
the action profiles. With these probabilities, we can further
calculate the expected payoff of a node. For example, when
a = (𝐹𝑜𝑟𝑤𝑎𝑟𝑑,𝐷𝑖𝑠𝑐𝑎𝑟𝑑), the expected payoff vector is
u = ((1− 𝑝𝑒)𝑆 + 𝑝𝑒𝑃, (1− 𝑝𝑒)𝑇 + 𝑝𝑒𝑃 ).

Let us now formally define the packet forwarding game
under noise.

DEFINITION 1: A packet forwarding game (Γ) under noise
is a quadruple (𝐼, 𝐴,Ω, 𝑢), where

∙ 𝐼 = 1, 2, ..., 𝑛 denotes the set of nodes.
∙ 𝐴 is a space of actions (𝑎𝑖) a node (𝑖) can take.
∙ Ω is a space of observed signals. For every action 𝑎𝑖 ∈ 𝐴𝑖

node 𝑖 takes, it observes a signal 𝜔𝑖 ∈ Ω𝑖. Both action
𝑎𝑖 and signal 𝜔𝑖 are node 𝑖’s private information. The
probability distribution of private signal 𝜔 = (𝜔1, ..., 𝜔𝑛)
depends on the action profile 𝑎 = (𝑎1, ..., 𝑎𝑛) and the
noise in the channel. It is denoted as 𝑝(𝜔∣𝑎).

∙ 𝑢 presents the realized payoffs. For node 𝑖, its expected
payoff is given by 𝑔𝑖(𝑎) = Σ𝜔𝑝(𝜔∣𝑎)𝑢𝑖(𝑎𝑖, 𝜔𝑖).

Often times, this game is played repeatedly as nodes have
a number of packets to be forwarded. From a discounted

1It is noted here that our assumption of non-identical channel is not
comprised, because the channel between 𝐴𝑆 and 𝐵𝑆 can have different lossy
properties, so that direct observation of actions is impossible.

repeated game [26] perspective, the discounted payoff for node
𝑖 is 𝑈𝑖 = Σ∞

𝑡=0𝛿
𝑡𝑔𝑖(𝑎(𝑡)), where 𝑎(𝑡) is the action taken at

time 𝑡 and 𝛿 ∈ (0, 1) is the discount factor. The discount factor
infers the preference of time or patience. A large 𝛿 shows a
node’s patience in the game and good valuation of payoffs it
gets in future stages, while a small 𝛿 means that the node is
more eager for immediate payoffs and has higher probability
of leaving the game after each stage.

The above definition differs from most existing game mod-
els in the sense that a node cannot directly observe others’
actions, rather, it observes through a private signal2 associated
with the action profiles played. As a matter fact, existing
models can be regarded as a special case when 𝜔 = 𝑎
for all nodes (all nodes have perfect public observation of
others’ actions), or 𝜔1 = 𝜔2 = ... = 𝜔𝑛 ∕= 𝑎 (all nodes
have imperfect public observation of others’ actions). While
the existing models either ignore the noisy nature of the
wireless channel or need some sort of communications among
nodes to exchange the observations, our model eliminates such
pre-assumptions and hence most appropriately abstracts an
wireless network scenario.

The outcome of a single stage (static) game can be char-
acterized by the well-known Nash Equilibrium [26]. In a
Nash equilibrium, no player can unilaterally deviate from the
equilibrium strategy to gain more payoff; or in other words,
every player is playing the best response to others. When the
same game is played repeatedly for finite or infinite number
of times, the notion of subgame is used so that the game
can be viewed as a subset of the original game starting at a
certain stage, with perfectly or imperfectly monitored history.
The repeated game can be analyzed by finding the Subgame-
Perfect Nash Equilibrium (SPNE), which consists of a series
of Nash Equilibria at every subgame of the original game [26].
From our modeling of the packet forwarding game, in order
for each node to make best response to others’ actions that
are hidden, a node first needs to form a belief on what the
others have done. A profile of strategies and beliefs makes an
assessment. To further refine the SPNE given the assessment,
sequential equilibrium [19] is introduced.

DEFINITION 2: Sequential Equilibrium3 is an assessment
of strategy 𝜋 and belief 𝜇, which satisfies the following
properties:

∙ Strategy Sensibility: When the beliefs are fixed, no player
prefers at any point to change her part of strategy in 𝜋
given the information set, i.e., 𝜋 maximizes the expected
payoffs.

∙ Belief Sensibility: Those information sets can be reached
with positive probabilities (𝜇) given 𝜋.

∙ Consistency: The assessment should be a limit point of a
sequence of the mixed strategies and associated sensible
beliefs, i.e., (𝜋, 𝜇) = lim𝑛→∞(𝜋𝑛, 𝜇𝑛).

Thus, in order to enforce cooperation in wireless networks
with noisy channel, it is highly desirable that any adopted

2It is noted that the signal here does not necessarily mean the physical
signal in the communication channel, but rather, it refers to all the possible
observations a node can make, e.g., the payoffs.

3Please refer to [19] for a more formal definition.
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strategies and their associated beliefs constitute the sequential
equilibrium. Also, this sequential equilibrium is attainable by
carefully designing the parameters that aid the calculation
of the beliefs. To further clarify the concept of sequential
equilibrium in the packet forwarding game, we assume that
although nodes cannot perfectly observe the actions of others,
they have beliefs about what the opponents have done. Based
on the beliefs, they take corresponding actions in future games.
The sequential equilibrium requires that the nodes form their
beliefs in such a way (e.g., following Bayesian rules) that the
states associated with the beliefs can be reached with positive
probabilities. In addition, the consequent actions taken given
the beliefs are the best response to the current state. A possible
solution to attain the equilibrium is proposed in [16], where
one node plays the Grim Trigger strategy and the other one
plays the defection strategy, and the beliefs are updated at
every stage of the game. However, the belief-based approach
requires extensive computations, and moreover, their modeling
on the effect of the channel is not thoroughly investigated, as
the Discard action can never be observed as Forward. Our
goal is to design a more efficient way to attain sequential
equilibrium under the noisy channel. Our approach is different
from [16] in both design notion and methodology.

III. STATE MACHINE BASED FORWARDING

In this section, we demonstrate how to construct a sequential
equilibrium using state machine based forwarding. It is noted
that a larger space of other cooperation enforcement strategies,
as well as the associated equilibria with noisy channels have
been analyzed in [25], [29]. For the sake of clarity, we consider
the packet forwarding game between two nodes. The payoff
matrix is shown in Table I, where the parameters follow the
basic configuration of Prisoner’s Dilemma, i.e., 𝑇 > 𝑅 > 𝑃 >
𝑆.

First, we define two types of observable signals 𝜔: Punish-
ment signal and Reward signal. We define that a Punishment
signal is observed when the node’s realized payoff is 𝑃 ,
otherwise a Reward signal is observed. It is noted that a
punishment signal can be observed even if node is playing
cooperatively. Table II can be used to calculate 𝑝(𝜔∣𝑎) given
the action profiles. However, the observations are private.

Further, let us consider a strategy with two states, 𝐶 (Coop-
erative) and 𝑁 (Non-Cooperative). The strategy begins with
state 𝐶 and operates with the following transition probabilities.

∙ When the node is in State 𝐶, play 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 with a small
probability 𝑞𝐶 . If 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 is taken and Punishment is
observed, transit to 𝑁 with probability 𝜌𝐶 . Stay in 𝐶,
otherwise.

∙ When the node is in State 𝑁 , play 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 with a
large probability 𝑞𝑁 . If 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 is taken and Reward
is observed, transit to 𝐶 with probability 𝜌𝑁 . Stay in 𝑁 ,
otherwise.

The state machine based forwarding approach is illustrated
in Figure 2. In this approach, there is always an uncertainty
about the state the opponent node is in, and hence the beliefs
are updated all the time. In order for this design to reach
sequential equilibria, it is important that, with any history, the
state machine is a best response to itself, regardless of the
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Fig. 2. Forwarding state machine.

beliefs. In other words, the problem is to find whether there is
a set of the system parameters (transition probabilities), such
that node 𝑖 does not gain different payoffs by choosing either
actions, i.e., Forward (F) or Discard (D), no matter what state
its opponent node −𝑖 is in.

The design problem is hence reduced to finding the system
parameters (𝑞𝐶 , 𝑞𝑁 , 𝜌𝐶 , 𝜌𝑁 ) that make the strategy itself a
best response to the state machine. We denote 𝑉𝐶 and 𝑉𝑁 as
the average repeated game payoffs for node 𝑖 when node −𝑖
is in state 𝐶 and 𝑁 respectively. From Bellman equations [5],
we can write the following equations.

When node 𝑖 plays 𝐹 ,

𝑉𝐶 = (1− 𝛿)[(1 − 𝑞𝐶)𝑅+ 𝑞𝐶𝑆] + 𝛿[(1 − 𝑞𝐶𝑝𝑒𝜌𝐶)𝑉𝐶 (1)

+𝑞𝐶𝑝𝑒𝜌𝐶𝑉𝑁 ]

𝑉𝑁 = (1 − 𝛿)[(1− 𝑞𝑁 )𝑅 + 𝑞𝑁𝑆] + 𝛿{(1− 𝑝𝑒)𝜌𝑁𝑞𝑁𝑉𝐶 (2)

+[1− (1− 𝑝𝑒)𝜌𝑁𝑞𝑁 ]𝑉𝑁}
Similarly, if node 𝑖 plays 𝐷,

𝑉𝐶 = (3)

(1− 𝛿)[(1− 𝑞𝐶)𝑇 + 𝑞𝐶𝑃 ] + 𝛿[(1− 𝑞𝐶𝜌𝐶)𝑉𝐶 + 𝑞𝐶𝜌𝐶𝑉𝑁 ]

𝑉𝑁 = (1− 𝛿)[(1 − 𝑞𝑁 )𝑇 + 𝑞𝑁𝑃 ] + 𝛿𝑉𝑁 (4)

For node 𝑖 to be indifferent between 𝐹 and 𝐷, equations
(1) and (3) should be equal when node −𝑖 is in state 𝐶, or
equations (2) and (4) should be equal when node −𝑖 is in
state 𝑁 . Thus, the solutions for above equations represent
the equilibria of the state machine. The following theorem
provides one of the solutions.

THEOREM 1: For the state machine based forwarding ap-
proach, there is a sequential equilibrium for large 𝛿, when
𝑝𝑒 <

𝑅−𝑃
𝑇−𝑃 and 𝑇 > 𝑅.

Proof: From equations (1) and (3) we have

(1−𝛿)[(1−𝑞𝐶 )(𝑇 −𝑅)+𝜌𝐶(𝑃 −𝑆)] = 𝛿𝑞𝐶𝜌𝐶(1−𝑝𝑒)(𝑉𝐶 −𝑉𝑁)
(5)

Thus, from equation (1), we can further derive

𝑉𝐶 = (1−𝑞𝐶)𝑅+𝑞𝐶𝑆+
𝑝𝑒

1− 𝑝𝑒 [(1−𝑞𝐶)(𝑅−𝑇 )+𝑞𝐶(𝑆−𝑃 )]
(6)

Similarly, from equations (2) and (4) we have

(1−𝛿)[(1−𝑞𝑁 )(𝑇−𝑅)+𝜌𝑁 (𝑃−𝑆)] = 𝛿𝑞𝑁𝜌𝑁(1−𝑝𝑒)(𝑉𝐶−𝑉𝑁)
(7)
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and

𝑉𝑁 = (1− 𝑞𝑁 )𝑇 + 𝑞𝑁𝑃 (8)

From the observation of equations (5)-(8), we are left with
four variables and two equations, which implies there are two
free variables. To find a possible solution to the equations, we
consider 𝜌𝐶 as a free variable and set 𝜌𝐶 = 1. The reasoning
is as follows. If there is a solution of the above equations
with 𝜌𝐶 < 1, we can always decrease 𝑞𝐶 in equation (6) to
increase 𝑉𝐶 as long as the following condition is met.

𝑝𝑒 <
𝑅 − 𝑆
𝑇 − 𝑃 (9)

However, this will lead to further increasing 𝜌𝐶 to balance
equation (5). Thus, 𝜌𝐶 can be increased to 1 but never exceed
1 as it is a probability. For the variables in equations (7) and
(8) we let 𝑞𝑁 = 1, which will further reduces the analysis
above as4

𝑉𝑁 = 𝑃 (10)

and

𝜌𝑁 =
𝑞𝐶(𝑃 − 𝑆)

(1− 𝑞𝐶)(𝑇 −𝑅) + 𝑞𝐶(𝑃 − 𝑆) . (11)

It is not hard to see that 𝜌𝑁 ∈ [0, 1]. Therefore 𝑞𝑁 = 1 is a
valid setting.

Putting equations (11) and (6) back to equation (7), we
obtain a quadratic equation of 𝑞𝐶 as

{𝛿(1− 𝑝𝑒)[𝑅− 𝑆 − 𝑝𝑒
1− 𝑝𝑒 (𝑇 −𝑅 + 𝑆 − 𝑃 )]}𝑞2𝐶

+{𝛿(1− 𝑝𝑒)[𝑃 −𝑅− 𝑝𝑒
1− 𝑝𝑒 (𝑇 −𝑅)]

+(1− 𝛿)(𝑃 − 𝑆 − 𝑇 +𝑅)}𝑞𝐶 + (1− 𝛿)(𝑇 −𝑅) = 0(12)

It is easy to see that one root of equation (12) is 𝑞𝐶 = 0 when
𝛿 = 1. To find the relationship between 𝑞𝐶 and 𝛿, we check
the existence of implicit function (𝐹 ) around (𝑞𝐶 , 𝛿)=(0, 1)
as

∂𝐹

∂𝑞𝐶
∣(𝑞𝐶 ,𝛿)=(0,1) = (1− 𝑝𝑒)[𝑃 −𝑅− 𝑝𝑒

1− 𝑝𝑒 (𝑇 −𝑅)]. (13)

Since 𝑝𝑒 < 𝑅−𝑃
𝑇−𝑃 , equation (13) ∕= 0, and thus the Implicit

Function Theorem can be applied around 𝛿 = 1 such that

𝑑𝑞𝐶
𝑑𝛿

= −
∂𝐹
∂𝛿 ∣(𝑞𝐶 ,𝛿)=(0,1)

∂𝐹
∂𝑞𝐶

∣(𝑞𝐶 ,𝛿)=(0,1)

=
𝑇 −𝑅

(1− 𝑝𝑒)[𝑃 −𝑅− 𝑝𝑒

1−𝑝𝑒
(𝑇 − 𝑅)] (14)

From the assumptions, we know that equation (14)< 0, which
essentially states that there exists a value 𝑞𝐶 ∈ (0, 1), for a
large enough 𝛿 such that 𝑞𝐶 → 0 as 𝛿 → 1. Hence, a set
of parameters satisfying the system requirement is obtained
around 𝛿 = 1.

4It is also correct to select 𝜌𝑁 as the free variable, however, if we were to
set 𝜌𝑁 = 1, further analysis would have been much less elegant. The derived
closed form expressions of the results will have limited implications.

Further, with the set of parameters, the average payoff is
updated as

𝑉𝐶 = lim
𝑞𝐶→0

{(1− 𝑞𝐶)𝑅 + 𝑞𝐶𝑆

+
𝑝𝑒

1− 𝑝𝑒 [(1− 𝑞𝐶)(𝑅 − 𝑇 ) + 𝑞𝐶(𝑆 − 𝑃 )]}

= 𝑅+
𝑝𝑒

1− 𝑝𝑒 (𝑅 − 𝑇 ) > 𝑃. (15)

Thus, state 𝐶 is always more efficient than state 𝑁 . In
addition, when the nodes are updating their beliefs on the
opponent, it will always assume that the opponent has never
deviated because no deviation is observable. The consistency
requirement is satisfied as neither node tries to update its
beliefs about others; instead, the nodes play the best response
strategies. Hence, we have proved that the state machine based
forwarding approach has a sequential equilibrium for large 𝛿,
when 𝑝𝑒 < 𝑅−𝑃

𝑇−𝑃 and 𝑇 > 𝑅.
In the proof, we showed that with the system parameters

(state transition probabilities) in [0,1], 𝑞𝐶 can be arbitrarily
close to 0 as 𝛿 goes to 1; and the cooperative state is always
strictly Pareto superior to the non-cooperative state. Moreover,
the average payoff of the cooperative state is arbitrarily close
to 𝑅− 𝑝𝑒

1−𝑝𝑒
(𝑇 −𝑅).

By further manipulating the constraints in Theorem 1, we
have the properties as follows.

COROLLARY 1: In order to reach sequential equilibrium,
𝑅 < 𝑇 < 1−𝑝𝑒

𝑝𝑒
(𝑅− 𝑃 ).

COROLLARY 2: In a sequential equilibrium, the average
payoff of the cooperative state is lower bounded by 𝑃 and
upper bounded by 𝑅 − 𝑝𝑒

1−𝑝𝑒
(𝑇 −𝑅).

Corollaries 1 and 2 infer that the values of the elements in
the payoff matrix can help to reach the sequential equilibrium,
and at the same time pushing the average payoff to the Pareto
frontiers. In particular, we can find a small enough 𝜖 such
that 𝑇 = 𝑅 + 𝜖 to relax the constraint on channel loss in
Theorem 1.

COROLLARY 3: If 𝑇 = 𝑅+ 𝜖, when 𝜖→ 0+, a sequential
equilibrium can be reached regardless of the noise in the
channel, and the average payoff of the cooperative state
𝑉𝐶 → 𝑅.

Proof: Since 𝑇 = 𝑅 + 𝜖, in Theorem 1, in order to
reach sequential equilibrium 𝑝𝑒 < 𝑅−𝑃

𝑇−𝑃 = 𝑇−𝜖−𝑃
𝑇−𝑃 . Also,

lim𝜖→0+
𝑇−𝜖−𝑃
𝑇−𝑃 = 1. Since 𝑝𝑒 ∈ (0, 1), for 𝜖→ 0+, it essen-

tially relaxes the constraint on 𝑝𝑒; thus 𝑝𝑒 can take any value
in (0,1). From Corollary 1, 𝑇 < 1−𝑝𝑒

𝑝𝑒
(𝑅−𝑃 ), which derives

𝑝𝑒

1−𝑝𝑒
< 𝑅−𝑃

𝑅+𝜖 . Hence, 𝑉𝐶(𝜖) = lim𝜖→0+ 𝑅− 𝜖(𝑅−𝑃 )
𝑅+𝜖 = 𝑅.

IV. COLLUSION RESISTANCE AND COALITION

FORMATION

Our discussion so far provides a method to enforce cooper-
ation in a two player game, however, we are more interested
in how cooperation can be enforced among all the nodes in
the network. In this section, we analyze cooperation from
the perspective of non-cooperative collusion. In particular,
we address two aspects: (i) how to resist collusion among
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nodes that deviate from the cooperation strategy, and (ii) how
the population of cooperative nodes grows and cooperation
prevails? We still consider the forwarding game, although
the game now is played between a colluding node and a
cooperative node.

A. Collusion Resistance

We consider nodes belonging to two different groups play-
ing the packet forwarding game as defined in Definition 1.
Based on what group a node belongs to, the strategies it plays
are either colluding (𝑠𝑐) or not colluding (𝑠𝑎). Collusion is
hence defined with the amount of utility derived from the
games.

DEFINITION 3: Collusion is a group of players working
together to maximize their own payoffs regardless of the social
optimum. A strategy 𝑠𝑐 is a colluding strategy if and only if

𝑈𝑖(𝑠
𝑐, 𝑠𝑐) ≥ 𝑈𝑖(𝑠

𝑎, 𝑠𝑐),

where 𝑈𝑖 is the observed average discounted payoff for node
𝑖, 𝑠𝑎 is any strategy other than 𝑠𝑐. It is called a strict colluding
strategy if the inequality holds.

We consider a pure strategy profile 𝑠∗ which is subgame
perfect and enforce cooperation on the equilibrium point (e.g.,
our proposed state machine based forwarding). Let 𝑥𝑐 be the
population share of a strict colluding pure strategy profile 𝑠𝑐.
The following lemma gives an upper bound on 𝑥𝑐.

LEMMA 1: A cooperation enforcement strategy 𝑠∗ is col-
lusion resistant if and only if

𝑥𝑐 <
𝑈𝑖(𝑠

∗, 𝑠∗)− 𝑈𝑖(𝑠
𝑐, 𝑠∗)

𝑈𝑖(𝑠𝑐, 𝑠𝑐) + 𝑈𝑖(𝑠∗, 𝑠∗)− 𝑈𝑖(𝑠𝑐, 𝑠∗)− 𝑈𝑖(𝑠∗, 𝑠𝑐)
.

(16)

Proof: We assume that the number of nodes in the game
is 𝑛. For the group of cooperating nodes, the group’s total
payoff is

𝑈∗ = 𝑛(1− 𝑥𝑐)𝑈𝑖(𝑠
∗, 𝑠∗) + 𝑛𝑥𝑐𝑈𝑖(𝑠

∗, 𝑠𝑐). (17)

The total payoff for the group of colluding nodes is

𝑈 𝑐 = 𝑛(1− 𝑥𝑐)𝑈𝑖(𝑠
𝑐, 𝑠∗) + 𝑛𝑥𝑐𝑈𝑖(𝑠

𝑐, 𝑠𝑐). (18)

Collusion resistance requires that 𝑈∗ > 𝑈 𝑐. Therefore,
𝑥𝑐[𝑈𝑖(𝑠

∗, 𝑠𝑐) − 𝑈𝑖(𝑠
∗, 𝑠∗) + 𝑈𝑖(𝑠

𝑐, 𝑠∗) − 𝑈𝑖(𝑠
𝑐, 𝑠𝑐)] >

𝑈𝑖(𝑠
𝑐, 𝑠∗)− 𝑈𝑖(𝑠

∗, 𝑠∗).
Since subgame perfect Nash equilibrium requires 𝑈𝑖(𝑠

∗, 𝑠∗) ≥
𝑈𝑖(𝑠

𝑐, 𝑠∗) and strict colluding infers 𝑈𝑖(𝑠
𝑐, 𝑠𝑐) > 𝑈𝑖(𝑠

∗, 𝑠𝑐),
we get equation (16).

B. Coalition Formation

Lemma 1 shows that in order to resist collusion, the
colluding node population should be kept under a threshold.
However, when the games are played over time, the population
of different groups (i.e., cooperative or colluding) is highly
dynamic. We apply evolutionary game theory [30] in our
following analysis to capture the dynamics on population.

DEFINITION 4: Let Δ be a strategy set, where strategies
𝑠𝑥, 𝑠𝑦 ∈ Δ. 𝑠𝑥 is an evolutionarily stable strategy (ESS) if

for every strategy 𝑠𝑦 ∕= 𝑠𝑥 there exists some 𝜖𝑦 ∈ (0, 1) such
that

𝑢[𝑠𝑥, 𝜖𝑠𝑦 + (1− 𝜖)𝑠𝑦] > 𝑢[𝑠𝑦, 𝜖𝑠𝑦 + (1− 𝜖)𝑠𝑥]
for all 𝜖 ∈ (0, 𝜖𝑦).

PROPOSITION 1: Δ𝐸𝑆𝑆 = {𝑠𝑥 ∈ Δ𝑁𝐸 : 𝑢(𝑠𝑥, 𝑠𝑦) >
𝑢(𝑠𝑦, 𝑠𝑦), ∀ 𝑠𝑦 ∈ 𝛽(𝑠𝑥), 𝑠𝑦 ∕= 𝑠𝑥}, where Δ𝑁𝐸 denotes the
set of Nash Equilibrium strategies, and 𝛽(𝑠𝑥) is the set of best
response strategies against 𝑠𝑥.
We consider the same 𝑠∗ and assume it is ESS. We denote 𝑥∗
as the population share of nodes adopting 𝑠∗, i.e., group of
cooperative nodes. Obviously, 𝑥∗ + 𝑥𝑐 = 1.

According to evolution theory, one of the ways to charac-
terize the population dynamics is through replicator. For the
sake of the discussion, we assume the nodes in the network
are smart enough to learn their payoffs and the dynamics for
the population of 𝑥∗ is given as

�̇�∗ = [𝑢(𝑠∗, 𝑠𝑐)− 𝑢(𝑠𝑐, 𝑠𝑐)]𝑥∗ (19)

Let Ma represent the payoff matrix when 𝑠∗ plays 𝑠𝑐.

Ma =

(
𝑢(𝑠∗, 𝑠∗) 𝑢(𝑠∗, 𝑠𝑐)
𝑢(𝑠𝑐, 𝑠∗) 𝑢(𝑠𝑐, 𝑠𝑐)

)

This matrix also holds true for the player playing 𝑠𝑐. Applying
Ma to equation (19), we get

�̇�∗ = [(𝑢(𝑠∗, 𝑠∗)− 𝑢(𝑠𝑐, 𝑠∗))𝑥∗𝑥𝑐]𝑥∗
+[(𝑢(𝑠∗, 𝑠𝑐)− 𝑢(𝑠𝑐, 𝑠𝑐))𝑥∗𝑥𝑐]𝑥𝑐

= (𝑎1𝑥∗ − 𝑎2𝑥𝑐)𝑥∗𝑥𝑐 (20)

where 𝑎1 = 𝑢(𝑠∗, 𝑠∗)− 𝑢(𝑠𝑐, 𝑠∗), 𝑎2 = 𝑢(𝑠𝑐, 𝑠𝑐)− 𝑢(𝑠∗, 𝑠𝑐).
LEMMA 2: The cooperation enforcement strategy 𝑠∗ leads

to +1 evolutionarily stable state on population share if and only
if 𝑠∗ is ESS or the initial population share 𝑥0𝑐 < 𝑎1/(𝑎1+𝑎2).

Proof: For any 𝑥∗ < 1, the +1 state can only be reached
if �̇�∗ > 0. Since 𝑥𝑐, 𝑥∗ > 0, it requires 𝑎1𝑥∗ − 𝑎2𝑥𝑐 > 0.
If 𝑎1𝑎2 < 0. The only possibility is 𝑎1 > 0, 𝑎2 < 0, and
indicates 𝑠∗ is ESS (Proposition 1). If 𝑎1𝑎2 > 0. 𝑥0𝑐 <

𝑎1

𝑎1+𝑎2
.

It can be noted that in case 𝑠∗ is not ESS, 𝑥0𝑐 = 𝑎1

𝑎1+𝑎2
and

𝑥0∗ = 𝑎2

𝑎1+𝑎2
are the mixed strategy Nash Equilibrium values.

It suggests that when no ESS exists, the strategy with the
initial population greater than the equilibrium value prevails.

Summarizing the discussions above, we have the following
theorem on a general cooperation enforcement strategy.

THEOREM 2: A cooperation enforcement strategy 𝑠∗ en-
forces the prevalence of cooperation if and only if it satisfies
either of the following two conditions:

∙ 𝑠∗ is ESS,
∙ 𝑥0𝑐 < min( 𝑈𝑖(𝑠

∗,𝑠∗)−𝑈𝑖(𝑠
𝑐,𝑠∗)

𝑈𝑖(𝑠𝑐,𝑠𝑐)+𝑈𝑖(𝑠∗,𝑠∗)−𝑈𝑖(𝑠𝑐,𝑠∗)−𝑈𝑖(𝑠∗,𝑠𝑐) ,
𝑎1

𝑎1+𝑎2
).

Remarks: In the second condition, both terms in the min-
imization function are the same if 𝛿 = 1 for the repeated
game. It also suggests that when all the players in the game
stick to continuous participation, the colluding nodes will be
enforced to be cooperative with time. Thus collusion resistant
is bona fide cooperation coalition formation. The sensitivity of
the convergence of the formation (i.e., �̇�∗) will be determined
by the payoff matrix entries.
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V. SIMULATIONS AND EVALUATION

In this section, we evaluate our cooperation enforcement
packet forwarding strategies through simulation. We also show
how the dynamics of the population evolve and how collusion
can be resisted in the forwarding games.

A. Simulation Setup

We consider 50 nodes that are randomly scattered in an area
of 1000𝑚×1000𝑚. The physical communication range is set
to be 250𝑚. During the simulation, log-distance path loss with
exponent of 3 is adopted as the propagation model, and IEEE
802.11 is the underlying MAC protocol with a bandwidth of 2
Mbps. In particular, we simulate CSMA/CA with exponential
backoff where the contention window grows exponentially
from a minimum value of 31. The unit slot time is 20 𝜇s.
DIFS and SIFS are 50 𝜇s and 10 𝜇s, respectively. The size of
an ACK packet is 38 bytes. Each data packet size is 64 bytes
and is generated as a constant bit rate (CBR) traffic with 2
packets per second, unless specially mentioned. We allow only
one data session at a time. The data sessions originate and
terminate at randomly selected source and destination nodes.

To simulate the repeated nature of the packet forwarding
games, any node pair engaged in packet forwarding plays a
number of games with respect to the discount factor 𝛿 defined
as a system parameter. For a given 𝛿, the average number of
subgames is 1/(1− 𝛿). Therefore, a data session has at least
1/(1− 𝛿) packets with one packet being forwarded in a sub-
game. The simulation runs for 1000 seconds with different
channel loss probabilities.

B. Performance Evaluation

Our investigation starts with the one hop packet forwarding
(i.e., two-player packet forwarding game). We set the game
payoff matrix as 𝑇 = 0.8, 𝑅 = 0.7, 𝑃 = 0.1 and 𝛿 = 0.99.
Figure 3 shows the average payoff for each of the nodes using
our state machine based forwarding strategy. For comparison,
we plot the payoff for “Full Cooperation” strategy as well.
Full cooperation implies that a node will always forward
others’ packet unconditionally. The theoretical bounds for our
proposed strategy are also presented. The plot shows that the
payoffs of the proposed strategy are within the theoretical
limits developed in Corollary 2. Also, it is observed that the
payoffs are very close to the unconditional “Full Cooperation”
strategy. The average payoffs are much closer to the upper
bound than the lower bound because when the games reach
sequential equilibria, mutual cooperation is enforced.

Figure 4 presents the average node payoffs with different
channel loss probabilities (Packet Error Rate, PER) 𝑝𝑒 and
discount factor 𝛿. Note that 𝛿 = 0.999 implies 1000 subgames
played while 𝛿 = 0.99 implies 100 subgames. The plots pro-
vide two insights: (i) as the channel becomes more unreliable,
the average payoff drops and (ii) the more games are played,
the more average payoff is generated. These observations also
suggest that it is more desirable to have more packets in one
continuous data session before switching for another relaying
node.

We show the equilibrium nature of the proposed state
machine based forwarding strategy in Figure 5. The payoffs
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Fig. 3. Average node payoff for state machine based forwarding strategy.
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Fig. 4. Average node payoff with different channel loss probability and
discount factor.

of deviation strategies are plotted. In the deviation strategies,
when the node is in state C, it always plays 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 with
probability 𝑞𝐶 = 0.1 or 𝑞𝐶 = 0.15 (Recall that in our equi-
librium strategy, 𝑞𝐶 is very small.). In this setting, 𝛿 = 0.999
and 𝑝𝑒 = 0.01. Figure 5 clearly shows that the payoffs with
our proposed strategy are strictly greater that the deviation
strategies.

To further evaluate our proposed strategies, we consider
the network performance by assuming every hop on a data
route is independent. In Figure 6, we present the normalized
network throughput at 𝛿 = 0.99. We denote 1 as the state
that all the generated packets are successfully delivered from
source to destination. It is shown that with a small channel
loss probability (𝑝𝑒 = 0.01), our proposed State Machine
based Forwarding strategy (SMF) reaches almost the same
throughput as the fully cooperative strategy. With a larger 𝑝𝑒,
the throughput difference between SMF and the unconditional
cooperation case is larger.

In addition, we analyze the effects of hop count and channel
unreliability on the throughput. The results are shown in
Figure 7 with 𝛿 = 0.999. It can be noted that throughput drops
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Fig. 6. Normalized data session throughput for different channel loss
probability and strategies.

when channel becomes more unreliable or hop count increases.
Also, our proposed SMF yields throughput performance very
close to the situation where all the nodes are unconditionally
cooperative.

The relationship of packet generation rate and throughput
is presented in Figure 8. In this setting, channel loss rate
(PER) 𝑝𝑒 for each link is non-identical and set to a random
value in [0.005, 0.015]. 𝛿 is set to 0.99. The plots do not
show much difference for different packet rates and the
throughput remains almost constant. It is noted that although
our simulation data rate does not fully utilize the link capacity,
the result will not change in a saturated network. The reason
is because the game is in an extensive game form, which does
not require that all players move (take actions) at the same
time. Therefore, even if there are collisions and/or delays when
nodes try to access the channel, our modeling of the game is
still valid.

Last but not least, we study the effect of mobility. In this
setting, 𝑝𝑒 = 0.01, 𝛿 = 0.999. We use Random WayPoint
(RWP) mobility profile with 5 seconds of pause in between
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Fig. 7. Normalized data session throughput vs. hop count and channel loss
probability.
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Fig. 8. Normalized data session throughput vs. packet generation rates.

two consecutive moves. Figure 9 plots the throughput per-
formance for two different speeds. The results suggest that
mobility introduces link break probability and decreases the
throughput for our proposed forwarding strategy.

C. Population Dynamics

To illustrate how the dynamics of the population evolves
and how collusion can be resisted in the forwarding games,
we take the average population share over five simulation
runs and plot how the population changes as the games are
played. The strategies adopted by the nodes are our proposed
State Machine based Forwarding (SMF) and a naive collusion
strategy (CS) defined as follows:

DEFINITION 5: Naive Collusion Strategy (CS): Forward all
packets from the colluding group, discard all packets from
outside the group.

In Figure 10, we show the population dynamics with
different initial population share and channel loss rates. It
is very clear from the plots that the population adopting
SMF overtakes that adopting CS and the games eventually
converge to a point where the entire population adheres to
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Fig. 10. The effect of initial population share and channel unreliability.

SMF, i.e., all the nodes are cooperative. It is also suggested
that a larger initial cooperative population (𝑥0∗ = 0.7) leads
to a faster convergence of the population evolution. The plots
also clearly imply that the more reliable the channel is, the
faster cooperation can be enforced.

VI. CONCLUSIONS

In this paper, we investigate strategies that attain cooper-
ation in wireless networks with noisy channel. We consider
packet forwarding in unreliable channel as the core problem
and abstract it into a game theoretic model. The heterogeneous
and unreliable nature of the channel only allow the game to
be played with imperfect private information. To solve the
game, we propose a state machine based forwarding strategy
which brings a sequential equilibrium to the game. We also
show that through carefully designing the system parame-
ters, the equilibrium points are attainable. To address how
cooperation can be achieved in the presence of collusion, we
apply evolutionary game theory and show collusion resistance
and cooperation enforcement are equivalent. Our research
is backed by extensive simulation results. In particular, we

show how the proposed forwarding strategy outperforms other
non-cooperative strategies. Moreover, we provide the network
throughput performance under the proposed strategy with
respect to hop count, channel loss probability, and mobility. In
addition, the convergence of cooperation is also shown to be
related with initial cooperative population share and channel
unreliability.
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